
A First Course in Optimization

Ishan Kapnadak

Autumn Semester 2022-23

Updated on: 2022-11-20

Abstract

Lecture Notes for the course EE 659: A First Course in Optimization
taught in Spring 2022 by Prof. Vivek Borkar. Additional references
include A first course in optimization by Rangarajan K. Sundaram,

Optimization by vector space methods by David Luenberger, and Nonlinear
programming by Dimitri P. Bertsekas

Contents

1 Lecture 1 3

2 Lecture 2 7

3 Lecture 3 11

4 Lecture 4 15

5 Lecture 5 18

6 Lecture 6 21

7 Lecture 7 26

8 Lecture 8 28

9 Lecture 9 31

10 Lecture 10 34

1

11 Lecture 11 36

12 Lecture 12 40

13 Lecture 13 44

14 Lecture 14 47

15 Lecture 15 50

16 Lecture 16 52

17 Lecture 17 55

18 Lecture 18 58

2

§1. Lecture 1

Definition 1.1: Open Ball

The open ball of radius ϵ centered around x0 ∈ Rd is defined as

Bϵ(x0) :=
{
x ∈ Rd : ∥x− x0∥ < ϵ

}
.

Definition 1.2: Closed Ball

The closed ball of radius ϵ centered around x0 ∈ Rd is defined as

Bϵ(x0) :=
{
x ∈ Rd : ∥x− x0∥ ≤ ϵ

}
.

Definition 1.3: Open and Closed Sets

A set A ⊂ Rd is said to be open if for all x ∈ A, there exists an ϵ > 0 such
that Bϵ(x) ⊂ A. A set A is said to be closed if Ac is open.

We have the following properties for open and closed sets.

1. Let I be an arbitrary index set. If Aα is open for each α ∈ I, then⋃
α∈I

Aα

is open. In other words, open sets are closed under arbitrary unions.

2. Let I be a finite index set. If Aα is open for each α ∈ I, then⋂
α∈I

Aα

is open. In other words, open sets are closed under finte intersections.

3. Let I be an arbitrary index set. If Aα is closed for each α ∈ I, then⋂
α∈I

Aα

is closed. In other words, closed sets are closed under arbitrary intersections.

4. Let I be a finite index set. If Aα is closed for each α ∈ I, then⋃
α∈I

Aα

is closed. In other words, closed sets are closed under finite unions.

3

Definition 1.4: Convergence of a sequence

Let {xn} be a sequence in Rd. Then, {xn} converges to x∗ (written xn → x∗)
if for all ϵ > 0, there exists an n0 ∈ N such that

xn ∈ Bϵ(x
∗) ∀n > n0.

Equivalently, ∥xn − x∗∥ → 0.

Definition 1.5: Closure

Let A ⊂ Rd. The closure of A (denoted A) is the smallest closed set containing
A. Equivalently, A is the intersection of all closed sets containing A.

Definition 1.6: Interior

Let A ⊂ Rd. The interior of A (denoted Ao) is the largest open set contained
in A. Equivalently, Ao is the union of all open sets contained in A.

Note that by definition, we have Ao ⊂ A ⊂ A.

Definition 1.7: Boundary

Let A ⊂ Rd. The boundary of A is defined as

∂A := A \ Ao.

Note that for a closed set, A = A, and for an open set, Ao = A.

Proposition 1.8

A set A ⊂ Rd is closed if and only if

xn → x∗,xn ∈ A∀n =⇒ x∗ ∈ A.

Proof. Let A ⊂ Rd be closed, xn ∈ A for all n, and xn → x∗. Assume to the
contrary that x∗ /∈ A. Then, x∗ ∈ Ac, which is open by assumption. Thus, ∃ϵ > 0
such that Bϵ(x

∗) ⊂ Ac. This implies that xn /∈ Bϵ(x
∗) for all n, and thus xn ̸→ x∗,

a contradiction. To prove the converse, assume that A is not closed. Thus, there
exists a x̃ ∈ ∂A such that x̃ /∈ A. Then, for all ϵ > 0, Bϵ(x̃) ∩ A ̸= ∅. Let ϵn ↓ 0
and let xn ∈ Bϵn(x̃) ∩ A. Then, xn → x̃ /∈ A, a contradiction.

4

Definition 1.9: Limit Point

Let {xn} be a sequence in Rd. x̃ is a limit point of {xn} if there exists a
subsequence {xnk

} such that xnk
→ x̃.

Proposition 1.10

{xn} converges if and only if {xn} has a unique limit point.

Definition 1.11: Supremum and Infimum

Let A ⊂ R be bounded. Then,

supA := smallest x ∈ R ∪ {+∞} such that y ∈ A =⇒ y ≤ x,

inf A := largest x ∈ R ∪ {−∞} such that y ∈ A =⇒ y ≥ x.

Definition 1.12: Cauchy Sequence

A sequence {xn} is said to be Cauchy if lim
m,n↑∞

∥xm − xn∥ = 0.

Proposition 1.13

Cauchy sequences are bounded.

Proof. Let {xn} be a Cauchy sequene and let ϵ > 0. Pick N large enough such
that

n,m > N =⇒ ∥xm − xn∥ < ϵ.

We then have

xn ∈ Bϵ(xm) ∀n > N

=⇒ {xn : n > N} is bounded

=⇒ {xn} is bounded.

Proposition 1.14

Cauchy sequences have at most one limit point.

Proof. Suppose {xn} is a Cauchy sequence having two limit points, x̃ and x. Then,

5

there exist subsequences xñk
→ x̃ and xnl

→ x. We then have

lim
ñk,nl↑∞

∥xñk
− xnl

∥ = 0 =⇒ x̃ = x.

Definition 1.15: Complete Space

A metric space is complete if every Cauchy sequence converges.

6

§2. Lecture 2

Theorem 2.1: Bolzano-Weierstrass Theorem

Every bounded sequence in Rd has a convergent subsequence.

Proof. Suppose d = 1. Since {xn} is bounded, we have xn ∈ [a, b] for all n where
a, b ∈ R and a < b. The idea is to keep halving the interval and pick a half
interval containing infinitely many points. For example, consider the two half
intervals [a, a+b

2
] and [a+b

2
, b]. Since {xn} has infinitely many points, at least one

of these two half intervals has infinitely many points. Call this half interval [a1, b1]
and repeat this argument again for [a1, b1]. This gives us a sequence {(an, bn)}
satisfying

a0 ≤ a1 ≤ a2 ≤ · · · b =⇒ an → a∗

b0 ≥ b1 ≥ b2 ≥ · · · a =⇒ bn → b∗

where we define a0 := a and b0 := b. Moreover, we have

|bn − an| =
b− a

2n
→ 0 =⇒ a∗ = b∗.

Since there are infinitely many xn’s in [ak, bk] for any k, pick x̃k ∈ [ak, bk] ∩ {xn}
such that x̃k ̸= x̃j for j < k. Thus, x̃k → a∗ = b∗. This can be generalised to d > 1
via induction and we leave this as an exercise to the reader.

Note that the above argument does not generalise to infinite dimensions. For
example, consider the complete orthonormal space

L2[0, T] :=

{
f : [0, T]→ R :

∫ T

0

f 2(t) dt <∞
}

with inner product

⟨f, g⟩ :=
∫ T

0

f(t)g(t) dt.

Consider an orthonormal basis {en} satisfying

⟨en, em⟩ =

{
1 if n = m,

0 if n ̸= m.

Note that ∥en − em∥ =
√
2 whenever n ̸= m and thus {en} has no convergent

subsequence.

7

Proposition 2.2

Let f : C ⊂ Rd → R be bounded from below. Let β = infx∈C f(x). Then,
∃ {xn} ∈ C such that f(xn) ↓ β.

Theorem 2.3: Weierstrass Theorem

Let C ⊂ Rd be closed and bounded, and let f : C → R be continuous. Then,
f attains its minimum and maximum.

Proof. Let {xn⟩ ∈ C be such that f(xn) ↓ β := infx∈C f(x). By Bolzano-
Weierstrass, ∃ {xnk

} such that xnk
→ x∗. Since C is closed, x∗ ∈ C. Since f

is continuous, f(xnk
) → f(x∗) =⇒ f(x∗) = β. A similar argument holds for

maximum.

Corollary 2.1

Let C ⊂ Rd be closed and let f : C → R be continuous and satisfy

lim
∥x∥↑∞

f(x) =∞.

Then, f attains its minimum on C.

Proof. Let {xn} be such that f(xn) ↓ β := infx∈C f(x). Then, {xn} is bounded,
since otherwise ∃ {xnk

} such that ∥xnk
∥ ↑ ∞ =⇒ f(xnk

)→∞ ≠ β. The previous
argument now follows through.

Definition 2.4: Limit Supremum and Limit Infimum

Let {xn} ∈ R. We define

lim sup
n↑∞

xn := lim
n↑∞

sup
m≥n

xm = inf
n≥1

sup
m≥n

xm

lim inf
n↑∞

xn := lim
n↑∞

inf
m≥n

xm = sup
n≥1

inf
m≥n

xm

We sometimes also denote the limit supremum as limxn and the limit infimum
as limxn.

8

Note that lim sup and lim inf are always well-defined if we allow {±∞} as pos-
sibilities. This is because supm≥n xm is a non-increasing sequence and thus must
converge (possibly to −∞). Similarly, infm≥n xm is a non-decreasing sequence and
thus must converge (possibly to +∞). We also note that

1. lim sup
n↑∞

xn ≥ lim inf
n↑∞

xn.

2. If lim sup
n↑∞

xn = lim inf
n↑∞

xn = x∗, then xn → x∗.

Definition 2.5: Lower and Upper Semicontinuous

f : C ⊂ Rd → R is said to be lower semicontinuous (l.s.c) if whenever xn → x∗

in C, then lim inf
n↑∞

f(xn) ≥ f(x∗).

f : C ⊂ Rd → R is said to be upper semicontinuous (u.s.c) if whenever xn → x∗

in C, then lim sup
n↑∞

f(xn) ≤ f(x∗).

Corollary 2.2

If f : C ⊂ Rd → R is lower semicontinuous, C is closed and bounded, then f
attains its minimum.

Proof. Let {xn} ∈ C be such that f(xn) ↓ β := infx∈C f(x). By Bolzano-
Weierstrass, ∃ {xnk

} such that xnk
→ x∗. Since C is closed, x∗ ∈ C. Then,

β = lim
n↑∞

f(xnk
) = lim inf

n↑∞
f(xnk

) ≥ f(x∗) ≥ β =⇒ f(x∗) = β.

Similarly, an upper semicontinuous function attains its maximum on a closed and
bounded domain.

Proposition 2.6

Let g : C ×D → R where C ⊂ Rn, D ⊂ Rm. Define f : C → R as

f(x) := sup
y∈D

g(x,y) (resp. inf
y∈D

g(x,y))

Suppose f(x) <∞ (resp. f(x) > −∞) for all x ∈ C. If g(x,y) is continuous in
x for all y ∈ D, then f is lower semicontinuous (resp. upper semicontinuous).

9

Proof. Let xn → x∗ in C. Then,

lim inf
n↑∞

f(xn) ≥ lim inf
n↑∞

g(xn,y)∀y ∈ D

= lim
n↑∞

g(xn,y)

= g(x∗,y).

Thus,

lim inf
n↑∞

f(xn) ≥ g(x∗,y) ∀y ∈ D

=⇒ lim inf
n↑∞

f(xn) ≥ sup
y∈D

g(x∗,y) = f(x∗).

10

§3. Lecture 3

Definition 3.1: Directional Derivative

Let f : Rd → R and h ∈ Rd be a unit vector. We say that f is differentiable
at x in direction h if

lim
ϵ↓0

f(x+ ϵh)− f(x)

ϵ

exists. In this case, the limit is called the directional derivative of f at x in
direction h, and is denoted f ′(x,h).

Definition 3.2: Gateaux Derivative

Let f : Rd → R and h ∈ Rd be a unit vector. If the limit

lim
ϵ→0

f(x+ ϵh)− f(x)

ϵ

exists then it is called the Gateaux derivative of f at x along the line {ϵh : ϵ ∈
R}, and is denoted f ′(x,h). Alternatively, we may write

f(x+ ϵh) = f(x) + ϵf ′(x,h) + oh(ϵ)

where
oh(ϵ)

ϵ
→ 0 as ϵ→ 0.

Definition 3.3: Fréchet Derivative

Let f : Rd → R. If there exists a linear map Dxf : Rd → R such that

sup
∥h∥=1

∥∥∥∥f(x+ ϵh)− f(x)

ϵ
−Dx(h)

∥∥∥∥→ 0

as ϵ → 0, then f is said to be Fréchet differentiable and Dxf is called its
Fréchet derivative at x.

If f : Rd → R, then Dxf ∈ Rd and is called the gradient, denoted as ∇f(x).

If f : Rd → Rd, then Dxf ∈ Rd×d and is called the Jacobian matrix, denoted as

Dxf =

[[
∂fi
∂xj

]]
1≤i,j≤d

.

Now, ∇f(·) : Rd → Rd. Its derivative is the Jacobian matrix of ∇f and is called

11

the Hessian of f , denoted as

∇2f(x) =

[[
∂2f

∂xi∂xj

]]
1≤i,j≤d

.

Now onwards, unless otherwise mentioned, when we say that a function is differ-
entiable, we mean that it is Fréchet differentiable.

Proposition 3.4

If f is differentiable at x0, then

f(x) = f(x0) + ⟨∇f(x0,x− x0⟩+ o(∥x− x0∥).

If f is twice differentiable at x0, then

f(x) = f(x0)+ ⟨∇f(x0,x− x0⟩+
1

2
(x−x0)

top∇2f(x0)(x−x0)+o(∥x− x0∥2).

Theorem 3.5

If f is differentiable and has a local minimum at x0, then ∇f(x0) = 0.

Theorem 3.6

If x0 is a strict local minimum (i.e. there exists an open neighbourhood O of
x0 such that f(y) > f(x0) for all y ∈ O \ {x0}) and f is differentiable, then
∇2f(x0) is positive semidefinite. Conversely, if ∇f(x0) = 0 and ∇2f(x0) is
positive definite, then x0 is a local minimum.

We now move to the setting of a generalized constrained optimization problem.
Suppose C ⊆ Rd is open and f : C → R is continuously differentiable. Suppose
that g1, . . . , gk, h1, . . . , hs : Rd → R are all continuously differentiable (k, s ≥ 1).
We consider the constrained optimization problem

min
x∈C

f(x)

subject to

gi(x) = 0 for all i ∈ {1, . . . , k}, (equality constraints)

hi(x) ≤ 0 for all i ∈ {1, . . . , s}. (inequality constraints)

12

Theorem 3.7

Suppose x0 ∈ C satisfies the constraints and f(x0) ≤ f(x) for all x ∈ C. Then,
there exist λ0, λ1, . . . , λk, µ1, . . . , µs such that

λ0
∂f

∂xj

(x0) +
k∑

i=1

λi
∂gi
∂xj

(x0) +
s∑

i=1

µi
∂hi

∂xj

(x0) = 0 ∀j.

Furthermore,

1. λ0 ≥ 0, µr ≥ 0 for all r,

2. hr(x0) < 0 =⇒ µr = 0 (complementary slackness), and

3. if ∇gi(x0) (1 ≤ i ≤ k) and those ∇hr(x0) for which hr(x0) are linearly
independent, then λ0 = 1 without loss of generality.

Proof. Without loss of generality, let x0 = 0 and f(x0) = 0. Assume that hi(x0) =
0 for 1 ≤ i ≤ l, and hi(x0) < 0 for l < i ≤ s. Pick ϵ∗ such that Bϵ∗(0) ⊆ C and
hi(x) < 0 for all i > l and x ∈ Bϵ∗(0).

Lemma 3.8

For all ϵ ∈ (0, ϵ∗), there exists Nϵ ≥ 1 such that

f(x) + ∥x∥2 +Nϵ

(
k∑

i=1

gi(x)
2 +

l∑
j=1

h+
j (x)

2

)
> 0 ∀x ∈ ∂Bϵ(0),

where h+
j (x) := max(0, hj(x)).

Proof. Assume to the contrary. Then, ∃Nm ↑ ∞ and xm ∈ ∂Bϵ(x), m ≥ 1 such
that

f(xm) + ∥xm∥2 ≤ −Nm

(
k∑

i=1

gi(xm)
2 +

l∑
j=1

h+
j (xm)

2

)
∀m.

By Bolzano-Weierstrass, xm → x∗ along a subsequence denoted by {xm} again,
so that f(xm) → f(x∗) by continuity. Dividing both sides by −Nm and letting
m ↑ ∞, we get

k∑
i=1

gi(x
∗)2 +

l∑
j=1

h+
j (x

∗)2 ≤ 0.

13

Thus, gi(x
∗) = 0 for all 1 ≤ i ≤ k, and hj(x

∗) ≤ 0 for all 1 ≤ j ≤ l. x∗ satisfies the
constraints and thus f(x∗) ≥ f(x0). Note that f(xm) ≤ −ϵ2 =⇒ f(x∗) ≤ 0− ϵ2.
But, f(x0) = 0, a contradiction.

Now, we define

F (x) := f(x) + ∥x∥2 +Nϵ

(
k∑

i=1

gi(x)
2 +

l∑
j=1

h+
j (x)

2

)
.

Let x̂ be a minimizer of F (·) on Bϵ(0). Then, F (x̂) ≤ F (0) = 0. Thus, x̂ /∈ ∂Bϵ(0)
since we showed that F is positive on ∂Bϵ(0). Thus, ∇F (x̂) = 0. Evaluating the
derivative, we have

∂f

∂xj

(x̂) + 2x̂j + 2Nϵ

k∑
i=1

gi(x̂)
∂gi
∂xj

(x̂) + 2Nϵ

l∑
i=1

hi(x̂)
∂hi

∂xj

(x̂) = 0 ∀j.

Next, we put ϵ∗ = ϵm ↓ 0 and rewrite as Nm, x̂m, etc. The above equation can
then be rewritten as

λm
0

∂f

∂xj

(x̂m) +
2x̂m

∥zm∥
+

k∑
i=1

λm
i

∂gi
∂xj

(x̂m) +
l∑

i=1

µm
i

∂hi

∂xj

(x̂m) = 0 ∀j,

where

zm =
[
1 2Nmg1(x̂

m) · · · 2Nmgk(x̂
m) 2Nmh+

1 (x̂
m) · · · 2Nmh+

l (x̂
m) 0 · · · 0

]
∈ R1+k+s

and we divide throughout by ∥zm∥. Further, we let

Um :=
[
λm
0 λm

1 · · · λm
k µm

1 · · ·µm
l 0 · · · 0

]
with ∥Um∥ = 1. Thus, Um is the unit vector in the direction of zm. By the
Bolzano-Weierstrass Theorem,

Um →
[
λ0 λ1 · · · λk µ1 · · ·µl 0 · · · 0

]
along a subsequence, and x̂m → x0. Thus, we get

λ0
∂f

∂xj

(x0) +
k∑

i=1

λi
∂gi
∂xj

(x0) +
l∑

i=1

µm
i

∂hi

∂xj

(x0) = 0 ∀j.

With λ0 ≥ 0, the above theorem is called the Fritz-John condition, whereas with
λ0 = 1 the above theorem is known as the famous Karush-Kuhn-Tucker condition.

14

§4. Lecture 4

Theorem 4.1: Envelope Theorem / Danskin’s Theorem

Suppose C ⊆ Rd is open and D ⊆ Rm is closed and bounded. Suppose that
f : C × D → R is continuous and its partial gradient with respect to x ∈ C,
denoted as

∇xf(x,y) :=
[

∂f
∂x1

(x) · · · ∂f
∂xd

(x)
]
∈ Rd

is continuous. Let g(x) := maxy∈D f(x,y), where the maximum is attained
on a non-empty closed and bounded set M(x) ⊆ D. Then, g : Rd → R has a
directional derivative in every direction, given by

g′(x;n) = max
y∈M(x)

⟨∇xf(x,y),n⟩

for every unit vector n ∈ Rd.

Definition 4.2: Convex Set

A set C ⊆ Rd is said to be convex if for all x,y ∈ C, we have

αx+ (1− α)y ∈ C ∀α ∈ [0, 1].

Proposition 4.3

A set C ⊆ Rd is convex iff ∀x1, . . .xn ∈ C, n > 0 and αi > 0 with
∑

i αi = 1,
we have

n∑
i=1

αixi ∈ C.

Proof. (⇐=) is clear by taking n = 2. For (=⇒), we already know that the
result holds for n = 2, by definition. Suppose the statement holds for some n ≥ 2.
Then,

n+1∑
i=1

αixi = α1x1 + (1− α1) ·
n+1∑
i=2

αi

1− α1

xi︸ ︷︷ ︸
∈C

∈ C,

where the latter point is in C by the induction hypothesis. The result then follows
from induction.

15

Note that if C is closed, it suffices to check that x,y ∈ C =⇒ x+y
2
∈ C.

We list out some properties of convex sets below.

1. Convex sets are connected.

2. Intersection of an arbitrary family of convex sets is convex.

3. Union of two convex sets need not be convex.

4. Interior and closure of convex sets are convex.

5. Image of a convex set under an affine map is convex.

Definition 4.4: Convex Hull

Let A ⊆ Rd. The convex hull of A, denoted co(A), is the smallest convex set
containing A, or equivalently, the intersection of all convex sets containing A,
or equivalently, the set of convex combinations of all points in A.

Definition 4.5: Closed Convex Hull

Let A ⊆ Rd. The closed convex hull of A, denoted co(A), is the smallest closed
convex set containing A, or equivalently, the intersection of all closed convex
sets containing A.

Theorem 4.6

Let C ⊆ Rd be closed and convex and let x /∈ C. Then, there exists a unique
x∗ ∈ C such that

∥x− x∗∥ = min
y∈C
∥x− y∥.

Proof. Note that y 7→ ∥x− y∥ is a continuous map. By triangle inequality,
∥x− y∥ ≥ ∥y∥ − ∥x∥, and thus

lim
∥y∥↑∞

∥x− y∥ =∞.

The existence of a minimizer x∗ now follows from Corollary 2.1 of the Weierstrass
Theorem. Suppose x̂ ̸= x∗ is another minimizer. Then, the triangle formed by
(x,x∗, x̂) is an isosceles triangle with line segment (x∗, x̂) as its base. Moreover,
this triangle lies completely in C by convexity. By elementary geometry, it is easy
to see that the midpoint x∗+x̂

2
is at a strictly smaller distance from x than x∗, x̂, a

contradiction. Thus, x∗ is the unique minimizer of ∥y − x∥ over C.

16

The above x∗ is called the projection of x onto C. This theorem immediately
adapts to a more general setting, as follows.

Theorem 4.7

Let C,D ⊆ Rd be disjoint closed convex sets with C bounded. Then, there
exist x∗ ∈ C, y∗ ∈ D such that

0 < ∥x∗ − y∗∥ = min
x∈C,y∈D

∥x− y∥.

Proof. Consider the map (x,y) ∈ C ×D 7→ ∥x− y∥, which is clearly continuous.
If D is also bounded, the claim is immediate from Weierstrass Theorem (Theorem
2.3). If not, we have

∥(x,y)∥ ↑ ∞ ⇐⇒ ∥y∥ ↑ ∞,

since C is bounded. Thus, ∥(x,y)∥ ↑ ∞ =⇒ ∥x− y∥ ↑ ∞. The existence
of a minimizing pair (x∗,y∗) again follows from Corollary 2.1 of the Weierstrass
Theorem. Moreover, since C,D are disjoint, ∥x∗ − y∗∥ > 0.

Note that no uniqueness can be claimed. (Hint: imagine two disjoint rectangles
in R2 with sides parallel to each other). Next, we characterize the projection of x
onto C.

Theorem 4.8

Let C ⊆ Rd be closed convex and let x /∈ C. Then,

x∗ = argmin
y∈C

∥x− y∥

if and only if
⟨y − x∗,x− x∗⟩ ≤ 0.

Proof. The proof is left as an exercise.

17

§5. Lecture 5

Definition 5.1

A hyperplane with normal vector n and passing through point x0 ∈ Rd is
defined as the set

H :=
{
x ∈ Rd : ⟨x− x0,n⟩ = 0

}
.

H also defines two closed half spaces

LH :=
{
x ∈ Rd : ⟨x− x0,n⟩ ≤ 0

}
UH :=

{
x ∈ Rd : ⟨x− x0,n⟩ ≥ 0

}
that intersect in H.

Definition 5.2

Let A,B ⊆ Rd and let H be a hyperplane in Rd. We say that H separates A,B
if A ⊆ LH and B ⊆ UH or vice-versa.

Theorem 5.3

1. If C ⊆ Rd is closed convex and x /∈ C, then there exists a hyperplane
separating the two.

2. If C,D ⊆ Rd are disjoint closed convex sets, then there exists a hyper-
plane separating the two.

Proof. For the first part, it suffices to take n := (x − x∗)/∥x− x∗∥ and x0 = x∗.
We leave the proof for this part as an exercise. (Hint: Use Theorem 4.7).

Definition 5.4: Extreme Point

Let C ⊆ Rd be convex. A point x ∈ C is said to be an extreme point of C if
it cannot be expressed as a strict convex combination of two distinct points in
C. That is,

x = αy + (1− α)z, y, z ∈ C, α ∈ (0, 1) =⇒ x = y = z.

Clearly, an extreme point x ∈ ∂C because if not, there is an open ball centered at
x completely contained in C.

18

Theorem 5.5

A closed bounded convex set C ⊆ Rd has an extreme point.

Proof. Let l1, . . . , ld be linearly independent vectors in Rd. Let C0 := C and for
1 ≤ i < d, recursively define

Ci+1 :=

{
x ∈ Ci : ⟨li,x⟩ = min

y∈Ci

⟨li,y⟩
}
.

Then, Ci+1 ⊆ Ci for all i, and Ci’s are closed bounded and convex. If x,y ∈ Cd,
then ⟨li,x⟩ = ⟨li,y⟩ for all i, implying that x = y by our choice of li’s. Thus,
Cd = {x∗} for some x∗ ∈ C. We claim that x∗ is an extreme point of C. If not,
we may choose y ̸= z, both in C, such that x∗ = y+z

2
. Then,

⟨l1,x⟩+
1

2
⟨l1,y⟩+

1

2
⟨l1, z⟩

implying that ⟨l1,x⟩ = ⟨l1,y⟩ = ⟨l1, z⟩, and thus y, z ∈ C1. Repeating this
argument, we conclude that y, z ∈ Ci for all i, and in particular y, z = Cd = {x∗}.
The claim thus follows.

Theorem 5.6

A closed and convex set has an extreme point if and only if it contains no lines.

Proof. Let C ⊆ Rd be closed and convex. Suppose C contains a line {x+ th : t ∈ R}
passing through x ∈ Rd in the direction h ∈ Rd. Then, x + th ∈ C for any
t ∈ R,x ∈ C. Indeed,

x+ th = lim
ϵ→0

[
(1− ϵ)x+ ϵ

(
x+

t

ϵ
h

)]
∈ C

since C is closed and convex. Thus, no point of C can be an extreme point.

Conversely, assume that C has no lines. We use induction to prove that C has
an extreme point. If C is a closed, convex subset of R having no lines, then C is
a closed and bounded interval and thus has an extreme point. Now, assume the
statement holds for dimensions strictly less than d, and consider a closed convex
set C ⊆ Rd. Since C has no lines, C has a boundary point, say x. Let H be the
supporting hyperplane of C at x. Now, H ∩ C lies in (d − 1)-dimensional space.
Since it contains no lines, it has an extreme point by the induction hypothesis. It
is easy to see that this extreme point is also an extreme point of C. (In fact, we
shall prove this in a later lecture).

19

Theorem 5.7: Krein-Milman Theorem in Finite Dimensions

A closed bounded convex set is the closed convex hull of its extreme points.

Proof. Let C ⊆ Rd be closed, convex, and bounded, and let E(C) denote the
set of its extreme points. It is clear that co(E(C)) ⊆ C. Suppose co(E(C)) ̸=
C, then ∃x∗ ∈ co(E(C)) \ C. We can construct a support hyperplane H =
{x : ⟨x− x0,n⟩ = 0} of co(E(C)) such that E(C) ⊆ LH and x∗ ∈ UH

o. Then,
⟨x∗ − x0,n⟩ > 0. As in the proof of Theorem 5.5, take l1 := −n to obtain x̂ ∈ C
with ⟨x̂∗ − x0,n⟩ > 0, a contradiction. The claim follows.

20

§6. Lecture 6

Lemma 6.1

Let C ⊆ Rd be closed, bounded, and convex, and letH be a support hyperplane
of C such that C ⊆ LH. Then, C1 := C ∩ H is closed bounded convex, and
E(C1) ⊆ E(C).

Proof. The first claim follows directly from the fact that C is closed bounded
convex and H is closed convex. Now, if E(C1) ̸⊆ E(C), then ∃x ∈ E(C1) \ E(C).
Then, x = αy + (1− α)z for some α ∈ (0, 1) and y, z ∈ ∂C with y ̸= z. Clearly,
at least one of y, z (say y) is not in C1. Then, it is in ∂C \ H ⊆ LH

o. Then,
z ∈ UH

o ∩ ∂C which is empty. Hence, y, z ∈ H ⊆ C1, but then x /∈ E(C1), a
contradiction.

Theorem 6.2: Carathéodory’s Theorem

Let C ⊆ Rd be closed bounded convex. Then, any x ∈ C can be written as a
convex combination of at most (d+ 1) extreme points of C.

Proof. We prove this by induction on d. For d = 1, C is a closed bounded interval,
say [a, b] which has extreme points a and b. For any x ∈ [a, b], we may write

x =
b− x

b− a
· a+ x− a

b− a
· b

which is a convex combination of exactly 2 extreme points. Suppose the claim
holds for some d ≥ 1. Let C ⊆ Rd+1 be closed bounded and convex, with non-
empty interior. If x ∈ E(C), the x can clearly be written as a trivial convex
combination of 1 extreme point. Else, take e1 ∈ E(C) and extend the line segment
from e1 through x till the point b1 := e1 + a(x− e1) where a ≥ 1 is the maximum
number for which b1 thus defined lies in C. Then, b1 ∈ ∂C (it is possible that
x ∈ ∂C in which case a = 1 and b1 = x). Let H1 be a support hyperplane at b1

such that C ⊆ LH1 . Let C1 := C∩H1 which is closed bounded and convex as well.
By induction hypothesis, b1 is a convex combination of at most (d + 1) extreme
points in E(C1) ⊆ E(C). That is, we may write

b1 =
d+2∑
i=2

αiei

21

for αi ∈ [0, 1] with e2, . . . , ed+2 ∈ E(C) and
∑

i αi = 1. Note that since we need
not require all d+ 1 extreme points, some αi’s may be zero. Now, we have

b1 = e1 + a(x− e1) =⇒ x = e1 +
1

a
b1 −

1

a
e1

=⇒ x =
a− 1

a
· e1 +

d+2∑
i=2

αi

a
· ei

which is a convex combination of at most (d+ 2) points in E(C).

Theorem 6.3: Dubin’s Theorem

Let C ⊆ Rd be closed bounded convex and let H1, . . . , Hm be closed half-spaces
in Rd with m ≤ d, defined as

Hi :=
{
x ∈ Rd : ⟨ri,x⟩ ≤ ci

}
, 1 ≤ i ≤ m.

Let

C∗ := C ∩

(
m⋂
i=1

Hi

)
.

Then, any extreme points of C∗ can be written as a convex combination of at
most (m+ 1) extreme points of C.

Proof. Suppose not, then there is some x ∈ E(C∗) that can be written as a strict
convex combination of k elements of E(C) (with m+1 < k ≤ d+1), say x1, . . . ,xk

and no less. These xi’s must form a (k− 1)-simplex ∆ ⊆ C, with x ∈ ∆o. Clearly,
x /∈ E(C). Consider a closed ball B ⊆ ∆ centered at x. The intersection of B with
0 ≤ l ≤ m hyperplanes passing through x will be a disc B′ centered at x such that
the dimension of span{y − x : y ∈ B′} is at least l. Thus, x cannot be in E(C∗),
a contradiction.

In several applications, we encounter a set of the form

K :=
{
x ∈ Rd : Ax ≤ b

}
where A ∈ Rm×d and b ∈ Rm. We discuss the structure of extreme points of K.

22

Theorem 6.4

Let x ∈ K. Then, x is an extreme point of K if and only if some d inequalities
corresponding to d linearly independent rows of the system Ax ≤ b are equal-
ities. That is, ⟨ai,x⟩ = bi for i corresponding to those d linearly independent
rows of A.

Proof. Let x ∈ K be an extreme point. Let

I = {i ∈ {1, . . . ,m} : ⟨ai,x⟩ = bi} .

Let F = {ai : i ∈ I}. We need to show that F contains d linearly independent
vectors, or equivalently, that span(F) ⊇ Rd. Suppose span(F) ⊊ Rd. Thus,
F⊥ ̸= {0}. Choose z ̸= 0 ∈ F⊥. For i ̸= I,

⟨ai,x± ϵz⟩ = ⟨ai,x⟩ ± ϵ ⟨ai, z⟩ ≤ bi

for ϵ sufficiently small, since ⟨ai,x⟩ < bi. Thus, x± ϵz ∈ K for such ϵ. But then,

x =
1

2
(x+ ϵz) +

1

2
(x− ϵz)

contradicting the fact that x is an extreme point. Thus, span(F) ⊇ Rd.

Conversely, let x ∈ K be such that d of the inequalities of the system Ax ≤ b are
equalities. If x is not an extreme point, then there exist z ∈ K such that x±z ∈ K.
Then,

⟨ai,x+ z⟩ ≤ bi =⇒ bi + ⟨ai, z⟩ ≤ bi =⇒ ⟨ai, z⟩ ≤ 0

⟨ai,x− z⟩ ≤ bi =⇒ bi − ⟨ai, z⟩ ≤ bi =⇒ ⟨ai, z⟩ ≥ 0

Thus, ⟨ai, z⟩ = 0 for each i for which ⟨ai,x⟩. Note that there are at least d such
linearly vectors ai. Since z ∈ Rd, it follows that z = 0, and hence, x is an extreme
point of K.

Corollary 6.1

K has finitely many extreme points.

Finally, we state some facts about extreme points without proof.

1. A boundary point may not be an extreme point. (For example, the points
on the edge of a rectangle except the corners are not extreme points.)

23

2. A convex set may not have an extreme point if it is not closed. (For example,
the open ball in Rd has no extreme points.)

3. If x ∈ ∂C is not an extreme point, and y, z ∈ C are such that x = αy+(1−
α)z for some α ∈ (0, 1), then y, z ∈ ∂C.

4. An extreme point may have a unique supporting hyperplane that contains
other non-extreme points.

5. The set of extreme points of a closed bounded convex set can be written as
a countable intersection of open sets.

Definition 6.5: Convex Function

Let C ⊆ Rd be convex. A function f : C → R is said to be convex if for all
x,y ∈ C, α ∈ [0, 1], we have

f (αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Proposition 6.6

Let C ⊆ Rd be convex. A function f : C → R is convex iff ∀x1, . . . ,xn ∈ C,
ai ≥ 0 with

∑
i ai = 1, we have

f

(
n∑

i=1

αixi

)
≤

n∑
i=1

αif(xi).

Proof. Hint: Follow the proof for Proposition 4.3.

The following properties follow directly from the definition and thus, we state them
without proof.

1. Positive linear combinations of convex functions are convex. That is, if
{fi : 1 ≤ i ≤ n} are convex, and a1, . . . , an ≥ 0, then

∑n
i=1 aifi is convex.

2. Pointwise limits of convex functions are convex. That is, if fn is convex for
each n ≥ 1, and f(x) := limn↑∞ fn(x) exists for each x ∈ C, then f is convex.

3. Pointwise suprema or maxima of convex functions are convex whenever well-
defined (that is, whenever pointwise finite).

4. Pointwise infima or minima of convex functions need not be convex.

24

5. If f1, . . . , fm are convex, and g : Rm → R is convex and componentwise
increasing, then h(·) := g (f1(·), . . . , fm(·)) : C → R is convex.

6. Let {fα}) be a family of convex functions indexed by a parameter α ∈ Rm

and let φ : Rm → [0,∞). Suppose

f ∗(x) :=

∫
fα(x)φ(α) dα

is well-defined as a Riemann integral for all x ∈ C. Then, f ∗ is convex.

7. Let f : Rd → R be convex, b ∈ Rd, A ∈ Rd×m. Then, g : Rm → R defined as
g(x) := f(Ax+ b) is convex.

25

§7. Lecture 7

Definition 7.1: Epigraph

Let C ⊆ Rd be convex and let f : R be a function. The epigraph of f is defined
as the set of points on or above the graph of f . That is,

epi(f) :=
{
(x, y) ∈ Rd × R : y ≥ f(x)

}
.

Lemma 7.2

f is a convex function if and only if epi(f) is a convex set.

Theorem 7.3

Let f : C → R be convex for a convex C ⊆ Rd with a non-empty interior.
Then, f is continuous at any x0 ∈ Co.

Theorem 7.4

Let f : Rd → R be convex. Then, f is differentiable almost everywhere

Definition 7.5: Lipschitz and Locally Lipschitz

A function f : Rd → R is said to be locally Lipschitz if for any bounded open
set B ⊆ Rd, there exists a constant KB > 0 (possibly depending on B) such
that for all x,y ∈ B, we have

|f(x)− f(y)| ≤ KB · ∥x− y∥.

If this constant KB does not depend on B, then f is said to be Lipschitz.

Theorem 7.6: Rademacher’s Theorem

A Lipschitz function is differentiable almost everywhere.

Theorem 7.7: Alexandrov’s Theorem

A convex function f : Rd → R is locally Lipschitz and twice differentiable
almost everywhere.

26

Theorem 7.8

1. Let f : C → R be convex, where C ⊆ Rd is convex and open. Then, for
any x ∈ C where f is differentiable, we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩ ∀y ∈ C.

Conversely, if f : C → R is continuously differentiable and the above
holds for all x,y ∈ C, then f is convex.

2. If f as defined above is twice continuously differentiable at x ∈ C, then
∇2f(x) is positive semi-definite. Conversely, if ∇2f(x) is positive semi-
definite in C, then f must be convex.

Theorem 7.9

Let f : Rd → R be convex. Then,

f(x) = sup {g(x) : g is affine and g ≤ f} .

Theorem 7.10

Let C ⊆ Rd be closed convex and bounded and f : C → R be convex continu-
ous. Then, epi(f) is a closed set.

27

§8. Lecture 8

The next result we prove is the Lagrange multiplier rule, the crown jewel of convex
optimization. We look at minimizing a continuous convex function f : C → R
defined on a closed convex set C ⊆ Rd, subject to constraints

gi(x) ≤ 0, 1 ≤ i ≤ m,

where gi : C → R is continuous for each i. In particular, the set of ‘feasible’ points

C̃ := C ∩

(
m⋂
i=1

{x ∈ C : gi(x) ≤ 0}

)

is a closed, convex set. We may compactly write the constraints as g(x) ≤ 0 where

g(x) :=

g1(x)...
gm(x)

 ∈ Rm,

and the inequalities are component-wise. Consider the set

D :=
{
(y, z) ∈ Rm × R : ∃x ∈ Rd such that y ≥ g(x) and z ≥ f(x)

}
.

It is easy to see that D is convex. (Why?)

Lemma 8.1

Define w : Rm → R as w(z) := infx∈C {f(x) : g(x) ≤ z}. Then, w is convex.

Proof. Let α ∈ [0, 1]. Then, for z1, z2 ∈ Rm, we have

w(αz1 + (1− α)z2) = inf
x∈C
{f(x) : g(x) ≤ αz1 + (1− α)z2}

≤ inf
x∈C
{f(x) : x = αx1 + (1− α)x2,x1,x2 ∈ C; g(x1) ≤ z1, g(x2) ≤ z2}

≤ inf
x∈C
{αf(x1) + (1− α)f(x2) : x1,x2 ∈ C, g(x1) ≤ z1, g(x2) ≤ z2}

= α inf
x1∈C

{f(x) : g(x) ≤ z1}+ (1− α) inf
x∈C
{f(x) : g(x) ≤ z2}

= αw(z1) + (1− α)w(z2).

We assume further that µ0 := infx∈C̃ f(x) is finite.

28

Theorem 8.2: Lagrange Multiplier Rule

Suppose there exists x1 satisfying g(x1) < 0. Then, ∃Λ ≥ 0 such that

µ0 = inf
x∈C

f(x) +Λ⊤g(x).

Furthermore, if this infimum is attained at some x∗ ∈ C̃, then x∗ minimizes f
on C̃ and

⟨Λ, g(x∗)⟩ = 0.

Note: The existence of x1 satisfying g(x1) < 0 is sometimes called Slater’s condi-
tion, and Λ is called the Lagrange multiplier.

Proof. Let B := {(z, y) ∈ Rm × R : z ≤ 0, y ≤ µ0}. Then, (x1, µ0 − ϵ) ∈ Bo for
some ϵ > 0 so that Bo ̸= ∅. Moreover, Bo ∩ D = ∅. Thus, there exists a
supporting hyperplane

H :=
{
(z, y) ∈ Rm × R : Λ⊤z+ βy = γ

}
for suitable Λ ∈ Rm, β, γ ∈ R such that D ⊆ UH and B ⊆ LH. That is, for all
(z1, y1) ∈ D, (z2, y2) ∈ B, we have

βy1 +Λ⊤z1 ≥ γ ≥ βy2 +Λ⊤z2.

From the definition of B, we haveΛ ≥ 0 and β ≥ 0. Since (0, µ0) ∈ B, substituting
this in the above inequality, we get

Λ⊤z+ βy ≥ βµ0 ∀(z, y) ∈ D.

We leave it as an exercise to show that β > 0 (Hint: take β = 0 and arrive at a
contradiction). Without loss of generality, we take β = 1. Since (0, µ0) ∈ ∂B∩∂D,
we have

µ0 = inf
(z,y)∈D

y +Λ⊤z

≤ inf
x∈C

f(x) +Λ⊤g(x)

≤ inf
x∈C̃

f(x) +Λ⊤g(x)

≤ inf
x∈C̃

f(x)

= µ0.

The first and second inequalities follow because the infimum is over successively
smaller sets, and the third inequality follows since Λ⊤g(x) ≤ 0. Thus, equality
must hold at every step, implying both statements of the theorem.

29

Definition 8.3: Saddle Point

Given C ⊆ Rd, D ⊆ Rm, and a map f : C ×D → R, a point (x∗,y∗) ∈ C ×D
is said to be a saddle point of f if

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗)

for all (x,y) in a relatively open neighbourhood of (x∗,y∗) in C ×D.

Now, suppose that the infimum µ0 is attained at x0 ∈ C. We define the Lagrangian
L : C × {y ∈ Rm : y ≥ 0} → R as

L(x,y) := f(x) + y⊤g(x).

We then have the following property.

Theorem 8.4: Saddle Point Property

The Lagrangian L(·, ·) has a saddle point at (x0,Λ). That is,

L(x0,y) ≤ L(x0,Λ) ≤ L(x,Λ) ∀x ∈ C,0 ≤ y ∈ Rm.

Proof. For any x ∈ C, by definition of µ0,x0, we have

µ0 = f(x0) +Λ⊤g(x0) ≤ f(x) +Λ⊤g(x).

Thus, L(x0,Λ) ≤ L(x,Λ) for all x ∈ C. On the other hand, for all y ≥ 0 in Rm,
we have

L(x0,y)− L(x0,Λ) = y⊤g(x0)−Λ⊤g(x0)

= y⊤g(x0)

≤ 0

by the Lagrange Multiplier Rule. The result hence follows.

30

§9. Lecture 9

We now turn our attention to linear programming, a specific yet useful instance
of convex optimization where all functions involved are linear. A typical linear
program in standard form is written as

inf
x∈Rd
⟨c,x⟩ subject to

Ax = b and

x ≥ 0,

(LP)

where A ∈ Rm×d, b ∈ Rm, and c ∈ Rd. Let F :=
{
Rd

+ : Ax = b
}
denote the

feasible set. We let ai denote the ith row of A. The apparently more general
problem obtained by replacing the constraint Ax = b by the constraint Ax ≤ b
can be reduced to standard form by introducing additional variables such as slack
variables. It suffices thus to restrict our analysis to the standard form.

The following result is crucial in the simplex method, one of the major algorithms
in linear programming.

Theorem 9.1

If F has an extreme point and the linear programming problem (LP) has an
optimal solution, then the linear program has an optimal solution which is an
extreme point of F .

Proof. Let S denote the set of optimal solutions to (LP). It is easy to see that S
is closed and convex. Since F has an extreme point, Theorem 5.6 ensures that F
(and hence S) has no lines. By the same theorem, S now has an extreme point
x∗. Let y, z ∈ F be such that x∗ = αy + (1− α)z for some α ∈ (0, 1). Then,

inf
x∈F
⟨c,x⟩ = ⟨c,x∗⟩ = α ⟨c,y⟩+ (1− α) ⟨c, z⟩

and thus ⟨c,x∗⟩ = ⟨c,y⟩ = ⟨c, z⟩, so that y, z ∈ S. Thus, x∗ = y = z proving that
x∗ is an extreme point of F .

Corresponding to the linear program in (LP), which we call the Primal problem,
we have a Dual problem given by

 sup
y∈Rm

⟨y,b⟩ subject to

y⊤A ≤ c.
(Dual)

31

Define

α := inf
x∈F
⟨c,x⟩

β := sup
y⊤A≤ c

⟨y,b⟩

Theorem 9.2: Weak Duality

Let x be a feasible solution to the Primal and let y be a feasible solution to
the Dual. We have

⟨y,b⟩ ≤ ⟨c,x⟩ .

In particular, β ≤ α always holds.

Proof. We have Ax = b and y⊤A ≤ c. Thus,

⟨y,b⟩ = ⟨y,Ax⟩ ≤
〈
y⊤A,x

〉
≤ ⟨c,x⟩ .

From weak duality, we see that if the primal is unbounded (α = −∞), then the
dual is infeasible (β = −∞). Similarly, if the dual is unbounded (β = ∞), then
the primal is infeasible (α =∞).

Theorem 9.3: Strong Duality

If either of the Primal or Dual is feasible and bounded, then β = α.

Proof. If the Primal is feasible and bounded, then the Dual is feasible. Similarly,
if the Dual is feasible and bounded, then the Primal is feasible. Now, consider

K =
{
Ãx : x ∈ Rd,x ≥ 0

}
where

Ã :=

[
A
c⊤

]
∈ R(m+1)×d.

Then, for any ϵ > 0, we have

(
b

α− ϵ

)
/∈ K. Using Theorem 5.3 (Separation

Theorem), we can find y′ ∈ Rm, η ∈ R such that

⟨y′,b⟩+ η(α− ϵ) > 0 ≥ ⟨y′,Ax⟩+ η ⟨c,x⟩

32

for every ϵ > 0 and x ≥ 0. By the feasibility of the primal, there exists x satisfying
Ax = b, and thus η ̸= 0. At the same time, since ϵ is arbitrary, we must have
η < 0. Replacing y′ by y := − 1

η
y′, we obtain

⟨y,b⟩ > α− ϵ

for every ϵ > 0. Similarly, for every x ≥ 0, we have

⟨y,Ax⟩ ≤ ⟨c,x⟩ .

Since x ≥ 0 is arbitrary, we must have y⊤A ≤ c⊤. Thus, y is feasible for Dual
and hence β ≤ α − ϵ for every ϵ > 0 so that β ≥ α. Coupled with Weak Duality,
this gives us β = α.

One standard application of strong duality is in Game Theory, where it is most
commonly used to prove von Neumann’s Minimax Theorem for two-player zero-
sum games.

We state two further results regarding the solvability of linear systems without
proof.

Theorem 9.4: Gauss

Let A ∈ Rm×d and b ∈ Rm. Then exactly one of the following holds.

1. There exists an x ∈ Rd such that Ax = b.

2. There exists a y ∈ Rm such that y⊤A = 0, y⊤b ̸= 0.

Lemma 9.5: Farkas’ Lemma

Let A ∈ Rm×d and b ∈ Rm. Then exactly one of the following holds.

1. There exists an x ∈ Rd such that Ax = b with x ≥ 0.

2. There exists a y ∈ Rm such that y⊤A ≤ 0, y⊤b > 0.

Further, these two results are equivalent.

33

https://en.wikipedia.org/wiki/Minimax_theorem

§10. Lecture 10

Recall that optimal solutions to linear programs are extreme points of the feasible
set. One way to optimize is then to simply search over extreme points. This is
exactly what the simplex algorithm does, which we describe during the course
of this lecture. We start at some initial extreme point and then check “neighbors”
of that extreme point, by replacing some constraints with others. As this is a
convex optimization problem, any local minimum is also a global minimum and
we are done.

We recall the setting of the standard form LP:


inf
x∈Rd
⟨c,x⟩ subject to

Ax = b and

x ≥ 0,

where A ∈ Rm×d, b ∈ Rm, and c ∈ Rd. We can always take m ≤ d because if
m > d, some of the constraints would be a linear combination of others and we
can remove them. By the same logic, we may assume rank(A) = m. We then pick
a set of indices B ⊆ {1, . . . , d} that correspond to m linearly independent rows of
A. Now, we may write

A =
[
AB AN

]
and x =

[
xB xN

]
where N := {1, . . . , n} \ B. We may then take xN = 0 and compute xB = A−1

B b.
This solution is called a basic feasible solution (BFS). The simplex algorithm works
as shown on the next page.

34

Algorithm 1 Simplex Algorithm

1: function Simplex(A ∈ Rm×d,b ∈ Rm, c ∈ Rd)
2: while True do
3: Compute BFS (xB,xN) with xN = 0, xB = A−1

B b
4: c⊤ ← c⊤N − c⊤BA

−1
B AN

5: if c ≥ 0 then
6: STOP and return (xB,xN)
7: end if
8: Select j ∈ N such that cj < 0
9: dj ← A−1

B aj

10: if dj ≤ 0 then
11: STOP and return (LP unbounded)
12: end if
13: k ← argmin

i∈B : dji>0
bi/dji

14: B ← (B \ {k}) ∪ {j}, N ← (N \ {j} ∪ {k}
15: end while
16: end function

Even though this algorithm terminates in a finite number of steps, it can have
an exponential complexity (dm) in the worst case. In practice, however, it often
performs better than the polynomial time algorithm.

Linear Programming often finds applications in everyday life. Some examples in-
clude the Transportation problem, the Network Flow Problem, and the Chebyshev
Center problem.

35

https://towardsdatascience.com/operations-research-in-r-transportation-problem-1df59961b2ad
https://optimization.mccormick.northwestern.edu/index.php/Network_flow_problem#:~:text=Network%20Flow%20Optimization%20problems%20form,viewed%20as%20minimizing%20transportation%20problems.
https://en.wikipedia.org/wiki/Chebyshev_center
https://en.wikipedia.org/wiki/Chebyshev_center

§11. Lecture 11

We shift our attention to Non-Linear Programming, a problem considerably harder
than Linear Programming. Given an objective function f : Rd → R, we wish to
find a local minimum x∗ ∈ Rd of f . One method to do so is called the line
search, which is an iterative method. We start with some initial guess x0 and use
the current guess to compute the next guess. This gives us a sequence of estimates

x0 → x1 → x2 → · · · → xn → xn+1 → · · ·

which we hope eventually converges to x∗. A general line search iteration can be
written as

xn+1 = xn + αn · dn.

Two questions then naturally arise.

1. What direction should we move in? (That is, how do we pick dn?)

2. How far should we move in this direction? (That is, how do we pick αn?)

A näıve way to proceed is to use exact line minimization. That is, at every step
we solve the following scalar optimization problem:

αn := argmin
α

f(xn + α · dn)

where the search takes place over a suitable subset of R+. This problem, however,
may not be easy or fast to solve in the general non-convex case. Moreover, the
above minimization represents a greedy heuristic, and it is not clear if this is really
the best thing to do.

The more common approach is to restrict the line search to an interval I = [0, r] for
a suitable r <∞. Further, we relax the exact minimization objective and instead
search for points that give us an adequate decrease in the objective function.
A classical scheme to do so relies on a ‘search and compare’ idea wherein we
successively generate subintervals of I recursively by subdividing the previous
interval at each step. One example is the simple binary search method which
bisects the interval at each step. Some more sophisticated methods include the
Fibonacci search where intervals are subdivided according to the ratio of successive
Fibonacci numbers and the golden section method where the ratio is fixed at the
golden ratio (which, as it turns out, is the limiting ratio of two successive Fibonacci
numbers). These latter two algorithms have some theoretically proven advantages
over the simple binary search method.

Even in such cases, however, there is no guarantee of convergence and the iterates
may keep oscillating. To fix this, we intuitively require that the direction dn

36

behaves “gradient-like”. More concretely, we hope that

⟨∇f(xn),dn⟩ < 0

so that by the Taylor formula, we have

f(xn+1) = f(xn) + αn · ⟨∇f(xn),dn⟩+ o(αn)

< f(xn) + o(αn).

Note that the ⟨∇f(xn),dn⟩ may be quite close to 0 even for non-negligible values
of ∇f(xn),dn unless the angle between the two is bounded away from ±π

2
. Thus,

what we really require is
⟨∇f(xn),dn⟩ < −δn

for a judiciously chosen δn > 0.

A popular variant of this scheme is the Armijo rule, which we describe next. We
first impose the following two conditions:

sup
n
∥dn∥ <∞,

sup
n
⟨∇f(xn),dn⟩ < 0.

The Armijo rule is as follows. Let I = [0, r] be fixed as before. Fix 0 < σ, β < 1.
Set αn := βm(n)r where

m(n) := {m ≥ 0: f(xn)− f(xn + βmrdn) ≥ −σβmr ⟨∇f(xn),dn⟩}

We then have the following result.

Theorem 11.1

If xn → x∗ along a subsequence, then ∇f(x∗) = 0.

Proof. Let xnk
→ x∗ along a subsequence and suppose that ∇f(x∗) ̸= 0. We have

f(xnk
− f(xnk+1)→ 0.

However,

f(xnk
)− f(xnk+1) ≥ −αnk

⟨∇f(xn),dn⟩
≥ 0 (by the hypothesis that ⟨∇f(xn),dn⟩ < 0).

37

Thus, we must have

αnk
⟨∇f(xn),dn⟩ → 0 =⇒ αnk

→ 0

where the latter follows since supn ⟨∇f(xn),dn⟩ < 0. Now,

f(xnk
)− f

(
xnk

+
αnk

β
dnk

)
< −σαnk

β
⟨∇f(xn),dn⟩ .

Next, define

pk :=
dnk

∥dnk
∥

bk :=
αnk
∥dnk
∥

β

x′
k := xnk

d′
k := dnk

.

By the Bolzano-Weierstrass Theorem, pk → p∗ along a subsequence (since these
are unit vectors and bounded), which we shall denote as {pk} again. Rewriting
with this new notation, we have

f(x′
k)− f (x′

k + bkpk)

bk
< −σ · ⟨∇f(x′

k),pk⟩

Thus, for some ck ∈ [0, bk], we have

−⟨∇f(x′
k + ckpk),pk⟩ < −σ ⟨∇f(x′

k),pk⟩

Letting k ↑ ∞, we have

−⟨∇f(x∗),p∗⟩ ≤ −σ ⟨∇f(x∗),p∗⟩ =⇒ ⟨∇f(x∗),p∗⟩ ≥ 0.

However, we also have

⟨∇f(x′
k),pk⟩ =

⟨∇f(x′
k),dk⟩

∥dk∥

Again, letting k ↑ ∞,

⟨∇f(x∗),p∗⟩ = lim
k↑∞

⟨∇f(x′
k),dk⟩

∥dk∥
< 0

which is a contradiction.

38

At every step dk in terms of the current iterate xk which allows us to write dk =
f(xk) for some appropriate f : Rd → Rd. It helps to view the algorithm as a
discretization (Euler scheme) of the ODE

ẋ(t) = f(x(t)).

As a result, we need
∞∑
n=1

αn =∞

to make sure the entire time axis is covered.

Gradient Descent

A popular variant of the iterative algorithm is Gradient Descent wherein we
have the following update rule:

xk+1 = xk − αk · ∇f(xk).

As a result, we have

f(xk+1) = f(xk)− αk∥∇f(xk)∥2 + o(αk).

This guarantees convergence to points where ∇f(x) = 0, which we call critical
points. However, such points need not necessarily be local minima (for example,
they can be local maxima too). However, we don’t usually run into this problem
due to the reasons described below.

Definition 11.2: Isolated Critical Points

A critical point x∗ of f is said to be isolated if there is an open neighborhood
O of x∗ that contains no other critical points of f .

For most “nice” functions, critical points are isolated and so we are more or less
guaranteed to converge to these points. There may be cases where we start exactly
at a local maximum in which case our iterate remains unchanged. However, this
is highly unlikely and thus convergence to a local minimum is almost guaranteed.

39

§12. Lecture 12

Recall that we discussed the following iteration as part of gradient descent.

xk+1 = xk − αk · ∇f(xk).

For the remainder of this lecture, we assume that f is twice continuously differen-
tiable.

Definition 12.1: Contraction

A function f : Rd → Rd is said to be a contraction if

∥f(x)− f(y)∥ ≤ α · ∥x− y∥

for all x,y ∈ Rd, where α ∈ [0, 1). If α = 1, we say that f is non-expansive.

Definition 12.2: Fixed Point

x∗ ∈ Rd is said to be a fixed point of g : Rd → Rd if g(x∗) = x∗.

Lemma 12.3: Banach Fixed Point Theorem

If F : Rd → Rd is a contraction, then F admits a unique fixed point x∗. Fur-
thermore, the iteration xn+1 := F (xn) converges to x∗ exponentially starting
from any arbitrary point x0 ∈ Rd.

Note: The above holds more generally for F : S → S where (S, d) is a complete
metric space.

Proof. Uniqueness. If x and y are two fixed points of F , then we have F (x) = x
and F (y) = y. Thus,

∥x− y∥ = ∥F (x)− F (y)∥ ≤ α · ∥x− y∥

where α ∈ [0, 1), which gives us x = y.

Existence. Let xn+1 = F (xn) and xn+2 = F (xn+1). We then have

∥xn+2 − xn+1∥ = ∥F (xn+1)− F (xn)∥
≤ α · ∥xn+1 − xn∥
≤ α2 · ∥xn − xn−1∥
≤ αn+1 · ∥x1 − x0∥

40

As a result, we have
∞∑
n=0

∥xn+1 − xn∥ <∞

which gives us that {xn} is Cauchy. Indeed, we have

∥xn+m − xn∥ ≤
m−1∑
k=0

∥xn+k−1 − xn+k∥

≤
m−1∑
k=0

αk+n∥x1 − x0∥

= αn · 1− αm

1− α
· ∥x1 − x0∥

→ 0 as m,n ↑ ∞.

Thus, xn → x∗ for some x∗. Further, we have xn+1 = F (xn). Letting n ↑ ∞, we
get x∗ = F (x∗) so that x∗ is a fixed point of F .

We analyze a simple case where f : Rd → Rd is assumed to be twice continuously
differentiable. Suppose that x∗ is its (isolated) local minimum and ∇2f(x∗) > 0
(positive definite). We can find an r > 0 such that ∇2f(x) > 0 for all x ∈ Br(x

∗)
by continuity. In particular, its eigenvalues are real and positive. Let λmin(x)
denote the least eigenvalue of ∇2f(x), and further, let λ0 := minx∈Br(x∗) λmin(x).
Let α ∈ (0, λ0) and consider the gradient descent scheme with αn ≡ α. Suppose
xn0 ∈ Br(x

∗). Since ∇f(x∗) = 0, Taylor’s formula for n ≥ n0 gives us

xn+1 − x∗ = xn − x∗ − α (∇f(xn)−∇f(x∗))

=
(
I− a∇2f(x̃n)

)
· (xn − x∗) for some x̃n ∈ Br(x

∗)

Thus,

∥xn+1 − x∗∥ ≤
∥∥I− a∇2f(x̃n

∥∥∥xn − x∗∥
≤ (1− aλmin(x̃n))∥xn − x∗∥
≤ (1− aλ0)∥xn − x∗∥

where (1− aλ0) ∈ (0, 1). Thus,

∥xn − x∗∥ = (1− aλ0)
n−n0∥xn0+1 − x∗∥ → 0

If we use general step sizes {αn} instead of the constant step size, a similar argu-
ment gives us

∥xn − x∗∥ = e−λ0
∑∞

m=n0+1 αm∥xn0+1 − x∗∥ → 0.

41

Gradient descent is extremely popular since it is quite a simple scheme - however, it
is not without its drawbacks. For example, the iterate may get stuck in a ‘shallow’
local minimum and fail to reach the global minimum. The scheme also slows
down considerably when it approaches local minima since the gradient magnitude
becomes smaller and smaller. The biggest drawback is its performance on ‘pinched’
landscaped where neighborhoods of local minima rise away extremely slowly in
some directions, and extremely rapidly in other directions. An example of such a
landscape is shown below in Figure 1.

Figure 1: A pinched landscape

As shown, gradient descent often ‘zigzags’ along the alley rather than just moving
down along it.

Momentum Methods

An easy fix for this is via the momentum method. To each iteration, we add a
term proportional to the previous move, so that our iteration becomes

xn+1 = xn − αn · ∇f(xn) + βn(xn − xn−1).

Usually, βn < αn. For simplicity, we let αn ≡ α and βn ≡ β. Setting yn =
xn−xn−1, the iteration can be viewed of the following set of differential equations.

ẋ(t) = y(t)

ẏ(t) = −ay(t)−∇f(x(t))

where a := (1 − α/β) > 0. This can be interpreted as Newtonian dynamics in
a potential field f with damping. A common example is a ball rolling down a
rough hill. Thanks to its momentum, the ball is able to escape any points of local
maxima, saddle points, inflection points, and even shallow local minima. It also

42

does a better job of moving along a ‘flat’ landscape than gradient descent. It
quickly approaches the bottom of valleys where it eventually settles down, much
faster than gradient dynamics. The iterate also locally oscillates dissipating energy
before it settles down.

Finally, note that we never evaluate the gradient analytically, but rather, it is
approximated via one of the following schemes.

∂f

∂xi

(x) ≈ f(x+ δei)− f(x)

δ
∂f

∂xi

(x) ≈ f(x+ δei)− f(x− δei)

2δ

The former requires only d + 1 function evaluations while having a higher error
of O(δ). The latter requires 2d function evaluations but has a smaller error of
O(δ2).

43

§13. Lecture 13

Conjugate Gradient Method

Let f(x) = 1
2
x⊤Qx − b⊤x where Q is positive definite. This allows us to define

an inner product
⟨x,y⟩Q := x⊤Qy

Definition 13.1: Conjugate Directions

{di}i ⊆ Rd are said to be conjugate directions if di ̸= 0 for all i, and

⟨di,dj⟩Q = 0 for all i ̸= j.

Clearly, there are at most d such conjugate directions.

Now, consider the algorithm

xn+1 = xn + αndn

where dn’s are chosen from the set of conjugate directions. Further, assume that
exact line minimization is carried out. We then have

αn = argmin
α

f(xn + αdn) =
d⊤
n (b−Qxn)

∥dn∥2

Further,
∇f(x) = Qx− b =⇒ ∇f(xn)

⊤di = 0 ∀i < n.

Thus,
xn+1 = argmin

x∈span{di},1≤i≤n

f(x).

Thus, xn converges to argmin f in at most d steps. This is called the method of
conjugate directions.

The conjugate gradient algorithm corresponds to the special case when the di’s are
computed by successively applying Gram-Schmidt orthogonalization to −∇f(xn),
n ≥ 0, with respect to the inner product ⟨·, ·⟩Q. Let gn := ∇f(xn). Then, gn ⊥ di

for i < n, so that gn ⊥ gi for i < n. Further, we can easily show that

g⊤
nQdj =

0 for 0 ≤ j < n− 1, and

g⊤
n gn

αn−1

for j = n− 1.

44

Furthermore, we have

d⊤
j Qdj =

1

αj

d⊤
j (gj+1 − gj)

Substituting this in the Gram-Schmidt formula, given by

dn = −gn +
n−1∑
j=0

g⊤
nQdj

d⊤
j Qdj

· dj

we get
dn = −gn + βndn−1

where

βn =
∥gn∥2

d⊤
n−1(gn − gn−1)

Simplifying this, we get the following conjugate gradient algorithm.

xn+1 = xn + αndn

dn+1 = −∇f(xn+1) + βn+1dn

αn =
d⊤
n (b−Qxn)

d⊤
nQdn

βn =
∥∇f(xn)

2∥
∥∇f(xn−1)∥2

The above choice of βn is called the Fletcher-Reeves formula. A better choice in
practice is the Polak-Ribiere formula which generalizes to non-quadratic func-
tions. This formula is as follows.

βn =
⟨∇f(xn),∇f(xn)−∇f(xn−1)⟩

∥∇f(xn−1)∥2

Newton-Raphson Method

Suppose you wish to solve for f(x) = 0 for some f : Rd → Rd. By virtue of Taylor
expansion, we may write

f(x1) ≈ f(x0) +Df(x0)(x1 − x0).

45

Assuming f(x1) ≈ 0, we get

x1 = x0 +Df(x0)
−1 (f(x1)− f(x0))

≈ x0 −Df(x0)
−1f(x1).

This gives us the iterative scheme

xn+1 = xn − αnDf(xn)
−1f(xn).

This scheme has been shown to work in practice most of the time. One can show
that to “minimize” the error term at each iteration, one must use the following
iterative scheme.

xn+1 = xn − αn

(
∇2f(xn)

)−1∇f(xn).

However, computing the Hessian at each step is extremely expensive. Furthermore,
the estimation of the gradients and the Hessian poses several numerical issues such
as the small divisor problem.

46

§14. Lecture 14

Let f(x) := Ax where A ∈ Rm×n with m ≤ n.

Theorem 14.1

1. If A is full rank, then for all b ∈ Rm, the set {x ∈ Rn : Ax = b} is an
(n−m) dimensional subspace of Rn.

2. If A is not full rank, then the set S = {y ∈ Rm : Ax = y} has dimension
less than n. Moreover, the m-dimensional volume of S is 0.

Definition 14.2: Manifold

A space S is a (d-dimensional) manifold if it locally resembles Euclidean space
at each point. More precisely, for every x ∈ S, there is an open neighbourhood
O of x which can be invertibly mapped to Rd.

Let f : O → Rd be the (invertible) map described above. S is a Ck manifold if f, f−1

are k times continuously differentiable. If S is a C∞ manifold, then S is called a
smooth manifold and f, f−1 are called diffeomorphisms. If f, f−1 are continuous,
then S is called a topological manifold and f, f−1 are called homeomorphisms.

Theorem 14.3: Implicit Function Theorem

Let S be a d-dimensional smooth manifold and let f : S → Rk with k < d. If
for some x0 ∈ S we have that Df(x0) is full rank (onto), then there exists an
open neighbourhood O of x0 such that for y = f(x0), O ∩ f−1(y) is a unique
(d− k) dimensional submanifold.

Theorem 14.4: Sard’s Theorem

Let S be a d-dimensional smooth manifold and let f : S → Rk with k < d. Let
X ⊆ S denote the critical set of f , that is, the set of points x ∈ S such that
Df(x) is not full-rank. Then, the image f(X) has k-dimensional volume 0.

The differential equation counterpart of the Newton scheme is

ẋ(t) = −
(
∇2f(x(t))

)−1 ∇f(x(t)) =: h(x(t))

Let E be the set of equilibria of the this equation, that is, E =
{
x ∈ Rd : h(x) = 0

}
.

Suppose that E can be enclosed in a bounded region D such that h is always point-

47

ing inwards at the boundary ∂D of D. Now, away from E, ∥∇f(x)∥ > 0 and we
may define

g(x) :=
∇f(x)
∥∇f(x∥

.

Further, g(x) = c represents a trajectory of the differential equation. Note that g
maps Rd onto the unit d-sphere Sd :=

{
Rd : ∥x∥ = 1

}
which is a (d−1)-dimensional

object. Thus, we expect the inverse image of any c ∈ Sd under g (g−1(c)) to be
a 1-dimensional curve in Rd. If the conditions imposed in the Implicit Function
Theorem hold, we may conclude by the Implicit Function Theorem that in a
sufficiently small neighbourhood of any point in D \ E, there is a unique such
curve. Starting from the boundary, we have the following.

1. The curve cannot intersect itself,

2. the curve cannot come arbitrarily close to itself, and

3. the curve cannot end abruptly at a point in D\E since the Implicit Function
Theorem allows us to extend it further.

4. The curve cannot turn around and exit D since h points inwards at ∂D.

Thus, the curve must converge to E. Moreover, by Sard’s Theorem, these argu-
ments fail for c belonging to a set of measure zero. Thus, the Newton scheme
works for ‘almost all’ initial conditions.

Quasi-Newton Schemes

Although the Newton scheme has a very reliable and sleek theory, it often runs into
numerical issues in practice, since we can only estimate the gradients. This has
led to the development of approximate methods known as quasi-Newton methods.
The idea is to keep track of a running recursive estimate of ∇2f(xn)

−1 in a manner
that ensures positive definiteness and the quasi-Newton condition. We have

∇f(xn+1)−∇f(xn) ≈ ∇2f(xn+1)(xn+1 − xn)

Thus, the approximation Hn+1 of ∇2f(xn+1)
−1 should satisfy the quasi-Newton

condition
xn+1 − xn = Hn+1 (∇f(xn+1)−∇f(xn))

A simple update scheme is to use a rank-1 update of the form A 7→ A + uu⊤

for a suitable u. A lot of the early schemes used this update but faced numerical
issues such as the small divisor problem. A more sophisticated approach is to a
use rank-2 update of the form A 7→ A+ uu⊤ + vv⊤ for suitable u,v.

48

To this end, we introduce the notation

sn := xn+1 − xn,

yn := ∇f(xn+1)−∇f(xn),

wn :=
sn

y⊤
n sn
− Hnyn

y⊤
nHnyn

.

The quasi-Newton condition can then be written as

sn = Hn+1yn.

Now, we consider the rank-2 update

Hn+1 = Hn + αuu⊤ + βvv⊤

for suitable scalars α, β and vectors u,v. By the quasi-Newton condition, we have

sn = Hnyn + αuu⊤yn + βvv⊤yn.

We choose u = sn, v = Hnyn, and α, β such that αu⊤yn = 1 and βv⊤yn = −1.
This leads to

Hn+1 = Hn +
sns

⊤
n

s⊤nyn

− Hnyny
⊤
nHn

y⊤
nHnyn

.

This is the original quasi-Newton scheme, now popularly known as the Davidon-
Fletcher-Powell method.

The general scheme is given by

xn+1 = xn − αnHn∇f(xn)

coupled with the iterates {Hn} which are given by

Hn+1 = Hn −
Hnyny

⊤
nHn

y⊤
nHnyn

+
sns

⊤
n

y⊤
n sn

+ ϕn

(
y⊤
nHnyn

)
wnw

⊤
n .

This family of algorithms is known as the Broyden family. Here, ϕn ∈ [0, 1] is
a flexible parameter which can be chosen based on yn, sn, and wn. The choice of
ϕn ≡ 0 gives us the Davidon-Fletcher-Powell method. The choice ϕn ≡ 1 gives us
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.

Note that wn ⊥ yn. Thus, any quantity proportional to wnw
⊤
n can be added

on the right hand side without affecting sn. The last term does however affect
the convergence behaviour of the algorithm and gives practitioners and additional
handle to tweak.

49

§15. Lecture 15

We now prove the correctness of the quasi-Newton scheme. Suppose Hn is positive
definite and αn is chosen so that for dn := −Hn∇f(xn), we have

⟨∇f(xn),dn⟩ < ⟨∇f(xn+1),dn⟩ .

This ensures that Hn+1 is positive definite. If ∇f(xn) ̸= 0, then the above can be
ensured by doing a line search till

|⟨∇f(xn),dn⟩| > |⟨∇f(xn+1),dn⟩|

for example, by line minimization for which the right hand side is in fact zero.
Then, αn > 0, yn ̸= 0, and

s⊤nyn = αnd
⊤
n (∇f(xn+1)−∇f(xn)) > 0,

so that all the denominators in the Broyden family are non-zero and Hn+1 is
well-defined. For z ̸= 0, let a :=

√
Hnz, and let b :=

√
Hnyn. Then,

z⊤Hn+1z = z⊤Hnz+

(
z⊤sn

)2
y⊤
n sn

−
(
y⊤
nHnz

)2
y⊤
nHnyn

+ ϕn

(
y⊤
nHnyn

) (
w⊤

n z
)2

=
∥a∥2∥b∥2 −

(
a⊤b

)2
∥b∥2

+

(
z⊤sn

)2
y⊤
n sn

+ ϕn

(
y⊤
nHnyn

) (
w⊤

n z
)2

.

We leave it as an exercise to show that this is in fact positive, which proves the
positive definiteness of Hn+1.

A ‘dual’ scheme for updating the Hessians∇2f(xn) rather than the inverse Hessian
(∇2f(xn))

−1 can also be derived with sn and yn interchanged. This, however,
requires matrix inversion which takes O(d3) time. The current scheme can be
reduced to O(d2) using Cholesky decomposition. On the other hand, the dual
scheme handles numerical errors better avoiding loss of positive definiteness better
than the current scheme.

A related scheme is the Gauss-Newton method which minimizes the square of
the linear approximation

f(x) ≈ f(xn) + ⟨∇f(xn),x− xn⟩ .

This, in principle, leads to

xn+1 = xn − αn

(
∇f(xn)∇f(xn)

⊤)−1∇f(xn)f(xn).

50

However, the rank-1 matrix ∇f(xn)∇f(xn)
⊤ is not invertible. Thus, we instead

use the scheme

xn+1 = xn − αn

(
∇f(xn)∇f(xn)

⊤ +∆
)−1∇f(xn)f(xn)

where ∆ is a small positive definite matrix. The choice ∆ = νI leads to the
Levenberg-Marquadt method, which is extremely popular in neural networks
literature.

51

§16. Lecture 16

Here we consider solution schemes for the generalized constrained optimization
problem, defined as

Minimize f(x) on C := {x : gi(x) ≤ 0 1 ≤ i ≤M} (P)

Penalty Functions

Instead of solving (P), one minimizes, without constrains, the function fλ(x) :=
f(x) + λF (x) where the penalty function F (x) is chosen such that as λ → ∞,
λF (x) → 0 on C, and → ∞ on Cc uniformly on closed bounded sets. Thus, if
x∗(λ) is a minimizer of fλ then any limit point of x∗(λ) as λ ↑ ∞ should be a
solution to (P). The solution to this unconstrained problem thus approximates
the solution of the original constrained problem. Typically, the optimal solution
to (P) is on the boundary ∂C but x∗(λ) /∈ C. Thus, x∗(λ) is not feasible and one
generally takes the point closest to it in C as an approximate solution. Usually, one
choses F to be continuously differentiable such that there is at least one minimizer
of fλ. A popular choice is

F (x) :=
M∑
i=1

(
g+i (x)

)2
.

Barrier Functions

The penalty function method approximates the solution to (P) from ‘the outside’.
Barrier function methods follow the same philosophy but approximate the solution
to (P) from ‘the inside’, that is, from the interior of C (recall that this is denoted
as Co). The idea is to minimize fµ(x) := f(x) + µF (x) on Co with a barrier
function F : Co → R satisfying F (x)→∞ as x→ ∂C and fµ → f on Co as µ ↓ 0.
One popular example is the logarithmic barrier:

F (x) :=
M∑
i=1

log

(
− 1

gi(x)

)
.

Barrier function methods form an important class of interior point methods used
in convex optimization.

Primal-Dual Methods

These schemes are based on the Lagrange multiplier rule, the idea being to find
the saddle point in (x,Λ) of f(x) + Λ⊤g(x). One such method is the gradient

52

ascent-descent scheme that uses the coupled iteration:

xn+1 = xn − αn

(
∇f(xn) +

M∑
i=1

Λn,i∇gi(xn)

)
Λn+1 = [Λn + αng(xn)]

+

where [·]+ is applied component-wise. The differential equation counterpart is

ẋ(t) = −∇
(
f +Λ(t)⊤g

)
(x(t)),

Λ̇(t) = g(x(t)).

constrained to remain in Rd × RM
+ . For strictly convex f, g, let (x∗,Λ∗) be the

(unique) saddle point. Then,

V (x,Λ) :=
1

2
∥x− x∗∥2 + 1

2
∥Λ−Λ∗∥2

serves as a Lyapunov function.

Projected Gradient

Consider the hyperplane H :=
{
x ∈ Rd : Ax = 0

}
. The projection of x ∈ Rd onto

H is given by
Γ(x) :=

(
I−A⊤(AA⊤)−1A

)
x.

Then, Γ(·) satisfies the following.

1. ∥Γ(x)− x∥ ≤ ∥y − x∥ for all y ∈ H.

2. Γ(x) = x for all x ∈ H.

3. Γ is idempotent. That is, Γ ◦ Γ = Γ.

A general idea of the algorithm is that we start with unconstrained minimiza-
tion. The moment we step out of the feasible region, we “pull” the iterate back
into the feasible region. Suppose h(x) = 0 denotes the active constraints. Then,
{y : x+Dh(x)(y − x) = 0} is the tangent plane at x. The iterative scheme pro-
ceeds by taking the projection of the gradient onto the constraint set. That is,

xn+1 = Φ
(
xn − αn

(
I−A⊤(AA⊤)−1A

)
∇f(xn)

)
where A = Dh(xn) and Φ is a suitable map to pull the iterate back to the feasible
region, given by Φ(y) := y +Dh(xn)

⊤α such that h(Φ(y)) = 0. α can be found
by Newton-Raphson.

53

Reduced Gradient

This method belongs to a class of algorithms called feasible direction methods. At
each step, the algorithm seeks to find an update direction such that the resulting
solution is adjudged beforehand to be feasible. This is in contrast to the projected
gradient method where we first perform unconstrained minimization and then
project the solution back to the feasible set.

Suppose we have linear constraints of the form Ax = b where A =
[
B C

]
for

some square non-singular matrix B. Writing x = (y, z) we may treat z as the
independent variables and y = B−1(b−Cz) as the dependent variables. We may
then write

∇f(y, z) = ∇f
(
B−1(b−Cz), z

)
= ∇zf(y, z)−∇yf(y, z)B−1C.

This prompts us to use the following scheme. Write xn = (yn, zn) where yn, zn are
the dependent and independent parts respectively. Let Dr denote the Jacobian
matrix w.r.t variables r. Then, we let

zn+1 = zn − αn

∇zf(yn, zn)−∇yf(yn, zn)D
yh(yn, zn)

−1︸ ︷︷ ︸
B−1

Dzh(yn, zn)︸ ︷︷ ︸
C

 ,

yn+1 = yn −Dyh(yn, zn)
−1Dzh(yn, zn) (zn+1 − zn) .

Note: In theory, we do not need to pull the iterate back into the feasible region.
However, due to discretization errors, which are not intrinsic to the algorithm, we
employ a similar Newton iteration to pull the iterate back to the feasible set.

54

§17. Lecture 17

Conditional Gradient or Frank-Wolfe Method

This is another popular feasible directions method. Here, we wish to minimize
f over a closed bounded feasible set C. At the (n + 1)th iteration, we compute
the direction dn that is maximally aligned with −∇f(xn) subject to the given
constraints. That is,

dn := argmin
z∈C

⟨∇f(xn), z⟩ .

The iterate is then given by

xn+1 = (1− αn)xn + αndn.

We choose αn ∈ (0, 1) such that
∑

n αn =∞. Also, note that xn ∈ C =⇒ xn+1 ∈
C by convexity.

Cutting Plane Method

Consider convex f, g. It suffices to consider a linear objective f(x) = c⊤x, since we
can equivalently consider the problem of minimizing r ∈ R subject to f(x)−r ≤ 0,
g(x) ≤ 0. Suppose the minimum is attained. Start with an initial polytope P1

containing C. At step n, given a polytope Pn containing C, do the following:

1. Find wn := argminPn
c⊤x. If g(wn) ≤ 0, stop. If not, go to step 2.

2. Let i∗n := argmaxi gi(wn). Then, gi∗n(wn) > 0. Set

Pn+1 = Pn ∪
{
x : gi∗n(wn) +

〈
∇gi∗n(wn),x−wn

〉
≤ 0.

}
Repeat till convergence.

It is easy to see that wn /∈ Pn+1. Thus, the next polytope excludes the current
minimizer. Also, for x ∈ C,

0 ≥ gi∗n(x) ≥ gi∗n(wn) +
〈
∇gi∗n(wn),x−wn

〉
which implies that C ⊆ Pn+1. Thus, the next polytope retains the entire constraint
set.

Now, suppose that wnk
→ w∗ where nk are such that i∗nk

≡ î (say). Since there are
only finite many indices, such a subsequence must exist. Moreover, convergence
follows by Bolzano-Weierstrass. Then, we have

∇gî(wnk
)→ ∇gî(w

∗)

55

implying supk ∥∇gî(wnk
)∥ <∞. Then,

gî (wn+m) ≤ ⟨−∇gî(wnk
),wn+m −wn⟩

≤ ∥∇gî(wnk
)∥∥wn+m −wn∥

=⇒ gî(w
∗) ≤ 0 (on letting k ↑ ∞)

=⇒ gi(w
∗) ≤ 0 ∀i.

Thus, w∗ is feasible. Optimality follows by a limiting argument.

Two Timescale Schemes

This is the coupled iteration

xn+1 = xn + αnh(xn,yn),

yn+1 = yn + βng(xn,yn).

Here h, g are assumed to be Lipschitz and αn, βn > 0 satisfy
∑

n αn =
∑

n βn =∞,
and βn = o(αn). The latter condition ensures that the second iteration moves at a
slower time scale than the first one, and is approximately constant (to be precise,
very slowly-varying) on the timescale of the first iteration. Thus, the first iteration
tracks the ODE

ẋ′(t) = h(x′(t),y)

for y ≈ y(t). Suppose this x′(t) converges to a unique Λ(y) where Λ(·) is Lipschitz.
This implies that xn−Λ(yn)→ 0 asymptotically. Thus, the second iteration tracks
the ODE

ẏ′(t) = g (Λ(y′(t)),y′(t)) .

Suppose this converges to some y∗. Then, the coupled iterate converges to (Λ(y∗),y∗).
Thus, {xn} sees {yn} as quasi-static, and {yn} sees {xn} as quasi-equilibriated.
Two timescale schemes are frequently used to replace a subroutine on a concur-
rent iteration. One example is the use of two timescales in actor-critic methods in
reinforcement learning.

Homotopy Methods

Let f, g : Rd → R. f is said to be homotopic to g if there exists a continuous
deformation F : Rd × [0, 1]→ R such that

F (x, 0) = g(x), F (x, 1) = f(x) for all x ∈ Rd.

A standard example is the map

F (x, t) = (1− t)g(x) + tf(x).

56

To find the minimizer of f , you start with a strictly convex curve g and slowly
deform it to f . Let x0 be the minimizer of g. We track the solution x∗(t), t ∈ [0, 1]
of ∇xF (x, t) = 0 with the initial condition x∗(0) = x0, as t → 1. This gives us
the two timescale iteration

xn+1 = xn − αn

(
∇2

xF (xn, tn)
)−1∇xF (xn, tn),

tn+1 = tn + βn (slowly increase to 1).

This guarantees a continuous curve to a critical point of f using a parametric form
of Sard’s Theorem.

57

§18. Lecture 18

Convex-Concave Procedure

This is sometimes also known as ‘Difference of Convex’ (DC) programming. Let
f : Rd → R be twice continuously differentiable such that the eigenvalues of∇2f(x)
are bounded in absolute value by some K <∞ for all x. Then, we may write

f(x) =
(
f(x) +K∥x∥2

)
+
(
−K∥x∥2

)
as a sum of a convex and a concave function. More generally, consider the problem
of minimizing f = h + g where h, g are continuously differentiable, h is convex,
and g is concave. The convex-concave procedure solves

∇h(xn+1) = −∇g(xn)

to get xn+1 from xn. By convexity, one has

h(xn) ≥ h(xn+1) + ⟨∇h(xn+1),xn − xn+1⟩
=⇒ h(xn+1) ≤ h(xn)− ⟨∇h(xn+1),xn − xn+1⟩

= h(xn+1) ≤ h(xn) + ⟨∇g(xn),xn − xn+1⟩
= h(xn+1) ≤ h(xn)− ⟨∇g(xn),xn+1 − xn⟩ .

Likewise by concavity, we get

g(xn+1) ≤ g(xn) + ⟨∇g(xn),xn+1 − xn⟩ .

Adding the two, we get
f(xn+1) ≤ f(xn).

Thus, this scheme guarantees monotone behaviour and the procedure thus stops
at a minima.

Proximal Methods

Define the proximal operator as

proxλf (u) := argmin
x

(
f(x) +

1

2λ
∥x− u∥2

)
.

The proximal algorithm performs the following iteration.

xn+1 = proxαnf (xn) = argmin
x

(
f(xn) +

1

2αn

∥x− xn∥2
)
.

58

By adding a quadratic penalty, one ensures that xn+1 does not move too far away
from xn. The minimum condition at each iteration yields the following.

0 ∈ ∂

(
f(·) + 1

2αn

∥· − xn∥2
)
|xn+1 = ∂f(xn+1) +

1

αn

(xn+1 − xn) .

Thus,
xn+1 ∈ xn − αn∂f(xn+1).

Where ∂f denotes a subgradient of f . If the subgradient is in fact a gradient, then
the above corresponds to the ‘backward Euler scheme’ for solving

ẋ(t) = −∇f(x(t)).

Let

Ψf (u) := inf
x

(
f(xn) +

1

2
∥x− u∥2

)
.

By the definition of the proximal operator,

Ψλf (x) = f
(
proxλf (x)

)
+

1

2λ

∥∥x− proxλf (x)
∥∥2.

By Danskin’s theorem, we have

∇Ψαnf (xn) =
xn+1 − xn

αn

.

That is,
xn+1 = xn − αn∇Ψαnf (xn)

which is an explicit formulation.

Proximal Gradient Method

The proximal gradient method deals with the minimization of functions of the
form x ∈ Rd 7→ f(x) + g(x) where f : Rd → R and g : Rd → R∪ {∞}. We further
assume that f is differentiable and that lim∥x∥↑∞ f(x) = lim∥x∥↑∞ g(x) =∞. The
algorithm is given by

xn+1 = proxαng (xn − αn∇f(xn)) .

Since g is allowed to take value ∞, we can impose the convex constraint x ∈ C
for a closed convex set C by taking g(x) = 0 for x ∈ C and g(x) =∞ for x /∈ C.

59

This scheme again faces problems with ‘pinched’ landscapes. We can modify the
definition of the proximal operator by replacing the term 1

2
∥x− y∥2 by a more

general distance measure D(x;y). A popular choice is the Bregman divergence

f(y)− f(x)− ⟨∇f(x),y − x⟩ ≈ 1

2
(y − x)⊤∇2f(x)(y − x)

which leads to the popular mirror descent algorithm.

Separable Problems

Consider minimizing
∑n

i=1 fi(xi) subject to
∑

i g(xi) ≤ 0. If the Lagrange multi-
plier Λ is known, this splits into separable problems: minimize fi(xi) + Λ⊤gi(xi)
for each i. This suggests the dual ascent scheme:

xi,n = argmin
(
f(·) +Λ⊤

n gi(·)
)
∀i,

Λn+1 = Λn + αn

(∑
i

gi(xi,n)

)
.

60

	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 8
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12
	Lecture 13
	Lecture 14
	Lecture 15
	Lecture 16
	Lecture 17
	Lecture 18

