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§1. Introduction

Definition 1.1: Stochastic Process

A stochastic process {X(t), t ∈ T } is a family of random variables indexed by
a set T .

For a discrete-time stochastic process, T could be N or Z. For a continuous-time
stochastic process, T could be R or R+.

A Bernoulli random variable X takes values in {0, 1} with P (X = 1) = p, for
some p ∈ (0, 1). Using a Bernoulli random variable, we can also define a Bernoulli
process, as follows:

Definition 1.2: Bernoulli Process

A Bernoulli process {Xn, n ∈ N} is a sequence of i.i.d (independent and iden-
tically distributed) Bernoulli random variables with parameter p. We denote
a Bernoulli process with parameter p as BP (p).

The sample path of a Bernoulli process is essentially a binary sequence. An exam-
ple of a sample path could be

1, 0, 1, 1, 0, 0, · · ·

A 1 in a sample path can be thought of as a ‘success’ or an ‘arrival’ or something
else based on context. Since this is a course on queueing theory, we shall call the
1’s as arrivals. For a given Bernoulli process, we define a few important parameters
associated with it.

1. We define A1 to be the time of the first arrival. That is,

A1 = min {n ≥ 1: Xn = 1}

An interesting question to ask now would be that what is the distribution
of A1. It turns out that A1 is a geometric random variable. Specifically, we
have

P (A1 = k) = (1− p)k−1 · p and E[A1] =
1

p

We shall write A1 ∼ Geometric(p).

2. We also define N(t) to be the number of arrivals until time t. It is easy
to see that the N(t) has a binomial distribution with parameters t and p.
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Specifically, we have

P (N(t) = k) =

(
t

k

)
· pk · (1− p)t−k

We shall write N(t) ∼ Binomial(t, p).

3. We denote Ak as the time of the kth arrival. For k ≥ 2, we then define

Tk = Ak − Ak−1

which are the inter-arrival times of the Bernoulli process. It is also easy to
show that Tk ∼ Geometric(p). This allows us to define a Bernoulli process
alternatively as

Definition 1.3: Bernoulli Process

A Bernoulli process with parameter p is a {0, 1} random process with
i.i.d Geometric(p) inter-arrival times.

We shall now state a few important properties of Bernoulli processes.

1. Splitting: Consider a BP (p). Each arrival of the process is made part of
Stream A with probability q and part of Stream B with probability 1 −
q. That is, the Bernoulli process is ‘split’ into two streams with a fixed
probability parameter q. Now, Stream A and Stream B are arrival processes
in their own rights. It turns out that these two split streams are Bernoulli
processes as well. Further, Stream A is BP (pq) and Stream B is BP (p(1−q)).
However, these two streams are not independent processes. In particular,
they both cannot have an arrival at the same time!

2. Merging: Consider a BP (p) and a BP (q) which are mutually independent.
We merge the two processes as follows: An arrival occurs in the merged
process if one occurs in either or both of the original processes. Then, the
merged process is also a Bernoulli process and it has parameter p+ q − pq.

3. Finally, we have that the Bernoulli process is independent and stationary. It
is thus, one of the simplest stochastic processes.
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§2. Discrete Time Markov Chains

§§2.1. What is a DTMC?

We shall now move on to define a DTMC. First, we will recall two important
notions from probability, namely - independence and conditional independence.

Definition 2.1: Independence

Two events A and B are said to be independent if

P (A | B) = P (A) ⇐⇒ P (B | A) = P (B)

Note: Here, we have implicitly assumed that all these conditional probabilities are
indeed defined. That is, we have assumed that P(A) and P(B) are positive.

Definition 2.2: Conditional Independence

Two events A and B are said to be independent conditioned on C (or given
C), if

P (A | BC) = P (A | C) ⇐⇒ P (B | AC) = P (B | C)

where AC denotes A ∩ C and BC denotes B ∩ C.

Here again, we have assumed that all conditional probabilities are well defined.
That is, we have assumed that P(C), P(AC) and P(BC) are positive. We can now
define a DTMC.

Definition 2.3: Discrete Time Markov Chain (DTMC)

Let S denote a countable set. A random process {Xn}n≥0 taking values in S
is said to be a Discrete Time Markov Chain (DTMC) if for all n and for all
i0, i1, i2, . . . , i, j ∈ S, we have

P (Xn+1 = j | X0 = i0, X1 = i1, X2 = i2, . . . , Xn = i) = P (Xn+1 = j | Xn = i)

The set S is called the state space of the DTMC. Further, we will denote the above
probability (the probability of transitioning from state i to state j at time n) as
pij(n) and we will refer to these as transition probabilities.

Intuitively, for a DTMC, the next state of the process is independent of the past
states of the process when conditioned on the present state. In other words, the
next state of the process only depends on its current state and not on the history
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(or past states) of the process.

As an example, suppose {Yn}n≥1 is a BP (p). We define X0 = 0 and

Xn = Xn−1 + Yn

for n ≥ 1. Then, {Xn} defines a random walk on Z+. At each time instant, the
process “moves right” with probability p and “stays put” with probability (1− p).
We now claim that {Xn} is a DTMC over Z+. Indeed, we have

P (Xn+1 = j | X0 = i0, X1 = i1, X2 = i2, . . . , Xn = i)

=


p j = i+ 1

1− p j = i

0 otherwise

These transition probabilities are clearly dependent only on the present state i,
validating our claim.

For most applications, we would be dealing with time-homogeneous DTMCs -
that is, DTMCs for which the transition probabilities are independent of time.
For time-homogeneous DTMCs, it suffices to denote the transition probabilities
as simply pij. We may represent time-homogeneous DTMCs pictorially via a
transition probability diagram (TPD). The TPD for the random walk example is
shown below

0 1 2 3 · · ·

1− p

p

1− p

p

1− p

p

1− p

p

Another example where a DTMC is used is the Gilbert-Elliot Model, which models
the quality of a wireless channel as a 2-state DTMC. The TPD for this model is
shown below

GOOD BAD1− a

a

1− b

b
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The TPD is a weighted directed graph where the nodes are states and an edge from
i to j exists if pij > 0. In this case, the weight of the edge is pij.

We will also find it useful to “pack” these transition probabilities into a matrix.
We define the transition probability matrix (TPM), P , as

P =
[
pij
]

When S is finite, we see that P is a square matrix of size |S| × |S|. Further, P is
a stochastic matrix. That is, all the rows of P sum up to 1. This follows from the
fact that ∑

j∈S

pij = 1 ∀ i ∈ S

For the Gilbert-Elliot model (with ‘GOOD’ enumerated as 1 and ‘BAD’ enumer-
ated as 2), the TPM is given by [

1− a a
b 1− b

]
For the random walk example, S is infinite. However, the matrix P may be
visualised as follows 

1− p p 0 0 0 · · ·
0 1− p p 0 0 · · ·
0 0 1− p p 0 · · ·
0 0 0 1− p p · · ·
...

...
...

...
...

. . .


That is, the TPM corresponding to the random walk example has (1 − p) along
its diagonal and p along its superdiagonal.

§§2.2. The Law of a DTMC

We now wish to find the law or distribution of a DTMC. Given a DTMC {Xn}n≥0,
we specify its law by specifying the joint distribution of every finite subset of
random variables. It turns out that the very definition of a DTMC leads to a
neat and compact way of expressing this law. First, we will understand the n-step
transition probabilities. Recall that we had defined

pij := P (X1 = j | X0 = i) = P (Xm+1 = j | Xm = i)
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as the 1-step transition probabilities and P :=
[
pij
]

as the 1-step TPM. Similarly,
for n ≥ 1, we define

p
(n)
ij := P (Xn = j | X0 = i) = P (Xn+m = j | Xm = i)

as the n-step transition probabilities and P (n) :=
[
p
(n)
ij

]
as the n-step TPM. Notice

that p
(1)
ij = pij for all i, j and P (1) = P . We will now try to explicitly calculate

these probabilities for the case n = 2. We have

p
(2)
ij = P (X2 = j | X0 = i)

=
∑
k

P (X2 = j,X1 = k | X0 = i)

=
∑
k

P (X1 = k | X0 = i) · P (X2 = j | X1 = k,X0 = i)

=
∑
k

P (X1 = k | X0 = i) · P (X2 = j | X1 = k)

Total Probability Law

Markov Property

∴ p
(2)
ij =

∑
k

pik · pkj

The above expression looks exactly like a matrix multiplication. In fact, you should
be able to convince yourself that

P (2) = P · P =⇒ P (2) = P 2

For n = 3, we have

p
(3)
ij = P (X3 = j | X0 = i)

=
∑
k

P (X3 = j,X2 = k | X0 = i)

=
∑
k

P (X2 = k | X0 = i) · P (X3 = j | X2 = k,X0 = i)

=
∑
k

P (X2 = k | X0 = i) · P (X3 = j | X2 = k)

Total Probability Law

Markov Property

∴ p
(3)
ij =

∑
k

p
(2)
ik · pkj

Thus, we get
P (3) = P (2) · P =⇒ P (3) = P 3
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Inductively, one can then show that

P (n) = P n ∀n ∈ N

We now claim that the law of a DTMC {Xn}n≥0 can be completely specified in
terms of

1. The law or distribution of X0, specified as a row vector µ0 with

µ0(i) = P (X0 = i)

2. The transition probability matrix, P .

Before we proceed to show this, let us first examine the law of Xn. That is, we
wish to find µn in terms of µ0 and P . We have

µn(j) = P (Xn = j)

=
∑
i∈S

P (Xn = j,X0 = i)

=
∑
i∈S

P (X0 = i) · P (Xn = j | X0 = i)

Total Probability Law

∴ µn(j) =
∑
i∈S

µ0(i) · p(n)ij

In terms of matrices, we have

µn = µ0 · P (n) = µ0 · P n

Let us now finally look at the law of the entire DTMC. Namely, we wish to specify
the joint law of any finite set of Xi’s in terms of µ0 and P . Let n1 < n2 < . . . < nm
all be natural numbers. Let i1, i2, . . . , im ∈ S. We wish to find

P (Xn1 = i1, Xn2 = i2, . . . , Xnm = im)

=
∑
i∈S

P (X0 = i,Xn1 = i1, Xn2 = i2, . . . , Xnm = im)

=
∑
i∈S

P (X0 = i) · P (Xn1 = i1 | X0 = i) · P (Xn2 = i2 | Xn1 = i1, X0 = i) · · ·

=
∑
i∈S

P (X0 = i) · P (Xn1 = i1 | X0 = i) · P (Xn2 = i2 | Xn1 = i1) · · ·

=
∑
i∈S

µ0(i) · p(n1)
ii1
· p(n2−n1)

i1i2
· . . . · p(nm−1−nm)

im−1im

Total Probability Law

Markov Property

Although the notation is cumbersome, we see that we can specify the joint distri-
bution of any finite set of Xi’s in terms of only µ0 and P .
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§§2.3. The long-run behaviour of a DTMC

To study the long-run behaviour of a DTMC, we make use of three important
distributions associated with a DTMC.

Definition 2.4: Limiting Distribution

Consider a DTMC over state space S. A probability distribution l =
[
l1 l2 · · ·

]
is called a limiting distribution of the DTMC if

lim
n→∞

p
(n)
ij = lj ∀ i, j ∈ S

In other words, as n grows larger, the n-step transition probabilities to a state j
converge to lj regardless of the initial state.

Definition 2.5: Time-average Distribution

Consider {Xn}n≥0 to be a DTMC over state space S. The probability distri-

bution θ =
[
θ1 θ2 · · ·

]
is called the time-average distribution of the DTMC

if

lim
n→∞

1

n

n∑
i=1

1{Xi=j} = θj almost surely

Here 1 represents the indicator function. Intuitively, the time-average distribution
captures the average fraction of time spent by the DTMC in each state.

Definition 2.6: Stationary Distribution

Consider a DTMC with a transition probability matrix P . A probability dis-
tribution π =

[
π1 π2 · · ·

]
is called a stationary distribution of the DTMC

if
π = π · P

π is sometimes also called an invariant distribution

If the initial law of the DTMC is µ0 = π, then it is trivial to see that µn = π for
all n ∈ N. Hence, the process remains stationary when the initial law is given by
the stationary distribution. In many applications, we find that l = π = θ. We will
now try to reason about when these three distributions exist and when are they
equal.
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Theorem 2.7

Consider a DTMC over state space S. If the DTMC has a limiting distribution
l, then l is also a stationary distribution. Moreover, l is the only stationary
distribution.

To prove the following theorem, we first state and prove the following short lemma.

Lemma 2.8

Consider a DTMC over state space S which has a limiting distribution l. For
any initial law µ0, µn → l pointwise.

Proof of Lemma 2.8. We know

µn(j) = P (Xn = j) =
∑
i∈S

µ0(i) · p(n)ij ∀ j ∈ S

First consider that S is finite. It then follows that

lim
n→∞

µn(j) = lim
n→∞

∑
i∈S

µ0(i) · p(n)ij =
∑
i∈S

µ0(i) ·
(

lim
n→∞

p
(n)
ij

)
=
∑
i∈S

µ0(i) · lj = lj ·
∑
i∈S

µ0(i) = lj · 1

∴ lim
n→∞

µn(j) = lj

as desired. The proof for an infinite state space is slightly trickier since we cannot
interchange sum and limits without justification. Consider now that S is infinite.
We now have

µn(j) =
∞∑
i=1

µ0(i) · p(n)ij

Also, it is easy to see that

M∑
i=1

µ0(i) · p(n)ij ≤ µn(j) ≤
M∑
i=1

µ0(i) · p(n)ij +
∞∑

i=M+1

µ0(i)

for any M ∈ N. Letting n go to ∞, we see that

lj ·
M∑
i=1

µ0(i) ≤ lim inf
n→∞

µn(j) ≤ lim sup
n→∞

µn(j) ≤ lj ·
M∑
i=1

µ0(i) +
∞∑

i=M+1

µ0(i)
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Now, letting M go to ∞, we see

lj ≤ lim inf
n→∞

µn(j) ≤ lim sup
n→∞

µn(j) ≤ lj

It then follows that
lim inf
n→∞

µn(j) = lim sup
n→∞

µn(j) = lj

and thus
lim
n→∞

µn(j) = lj

as desired.

We now begin our proof of Theorem 2.7. Note that we will have to prove the
theorem in two parts - first, we will show that if a limiting distribution exists,
then it is stationary. Second, we will show that this limiting distribution is in fact
the unique stationary distribution.

Proof of Theorem 2.7. We will first show that l = l · P where l is the limiting
distribution of the DTMC. We have

p
(n)
ij =

∑
k∈S

p
(n−1)
ik · pkj

If S is finite, then taking limits on either side, we get

lim
n→∞

p
(n)
ij =

∑
k∈S

[
lim
n→∞

p
(n−1)
ik

]
· pkj

∴ lj =
∑
k∈S

lk · pkj =⇒ l = l · P

Once again, this proof does not work when S is infinite. If S is infinite, we note
that

p
(n)
ij =

∞∑
k=1

p
(n−1)
ik · pkj

For any M ∈ N, we see that

p
(n)
ij ≥

M∑
k=1

p
(n−1)
ik · pkj
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Now, letting n→∞, we see

lj ≥
M∑
k=1

lk · pkj

for all M ∈ N. Next, letting M →∞, we see that

lj ≥
∞∑
k=1

lk · pkj︸ ︷︷ ︸
αj

∀ j ∈ S

Note that
∞∑
j=1

lj = 1

and
∞∑
j=1

αj =
∞∑
j=1

∞∑
k=1

lk · pkj =
∞∑
k=1

lk

∞∑
j=1

pkj = 1

We know that lj ≥ αj for all j ∈ S and yet

∞∑
j=1

lj =
∞∑
j=1

αj

Thus, we get that lj = αj for all j ∈ S. Thus,

lj =
∞∑
k=1

lk · pkj =⇒ l = l · P

as desired. Next, we show that l is the only stationary distribution. Let π be
any stationary distribution of the DTMC. Consider µ0 = π. It then follows that
µn = π for all n ∈ N. Letting n→∞, we see that

lim
n→∞

µn = π

However, Lemma 2.8 tells us that

lim
n→∞

µn = l

It then follows that π = l and hence, l is the unique stationary distribution.
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We now talk about two conditions which seem to be necessary for a DTMC to
have a limiting distribution. The first of these conditions is called irreducibility
which, in simple words, states that every state in the DTMC must be reachable
from every other state. Why is this important? Consider the following DTMC :

1

2 3

4 5

If we start in state 4, then any limiting distribution for the above DTMC can have
non-zero components only for states 4 and 5. Similarly, if we start in state 2, then
any limiting distribution for the above DTMC can have non-zero components only
for states 2 and 3. Since both these conditions cannot hold together, it follows
that the above DTMC has no limiting distribution. The source of this problem
is the fact that the states 4 and 5 are not reachable from the states 2 and 3 and
vice-versa. This problem is fixed by irreducibility. We now make this more precise.

Definition 2.9: Reachability

In a DTMC, state j is said to be reachable from state i if there exists an n ∈ N
such that p

(n)
ij > 0.

In graph-theoretic terms, the state j is said to be reachable from state i if there
exists a directed path from node i to node j in the TPD of the DTMC.

Definition 2.10: Irreducibility

A DTMC is said to be irreducible if all states are reachable from one another.
That is, for all (i, j) ∈ S × S, there exists an n ∈ N such that p

(n)
ij > 0.

In graph-theoretic terms, a DTMC is said to be irreducible if its TPD is strongly
connected. Recall that we call a directed graph G = (V , E) strongly connected if
there is a path in G between every pair of vertices in V . Note that it is possible
that a DTMC is not irreducible yet has a limiting distribution. However, we shall
see that these DTMCs can be handled with a good understanding of irreducible
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DTMCs. Hence, we impose irreducibility as a necessary condition.

The second necessary condition is aperiodicity. To illustrate this, consider the
following DTMC

1 2

34

The following DTMC cannot have a limiting distribution. Notice that p
(n)
12 = 0 for

all even n and p
(n)
42 = 0 for all odd n. For a limiting distribution, we must have

that the limits of the above two quantities must be equal, however this can only
give us a zero limit, for all states! Hence, no limiting distribution exists. This
problem arises because any path from a state to itself is of even length. To deal
with this problem, we introduce the idea of aperiodicity. We first define the period
of a state in a DTMC.

Definition 2.11: Period (of a state)

The period of a state j of a DTMC, denoted dj, is defined as

dj := gcd
{
n : p

(n)
jj > 0

}
That is, the period dj of state j is the GCD of all possible return path lengths
to state j.

In the above example, all states have period 2. We also have the following inter-
esting lemma.

Lemma 2.12

In an irreducible DTMC, all states have the same period, which is referred to
as the period of the DTMC.

We then define an aperiodic DTMC as follows

Definition 2.13: Aperiodicity
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An irreducible DTMC is called aperiodic if it has a period 1.

Notice that an irreducible DTMC is aperiodic if any state i has a self loop (pii > 0).

Proof of Lemma 2.12. Consider two distinct states i, j. We wish to prove that
di = dj. By irreducibility, there exist r, s ∈ N such that p

(r)
ij > 0 and p

(s)
ji > 0.

Notice now that p
(r+s)
ii > 0 and p

(r+s)
jj > 0. Let m | n denote that m divides n.

Next, we define

Ni :=
{
n : p

(n)
ii > 0

}
Nj :=

{
n : p

(n)
jj > 0

}
We then have that di = gcd(Ni) and dj = gcd(Nj). Now, we define

N ′j :=
{
r + s+ n : p

(n)
ii > 0

}
Observe that N ′j ⊆ Nj. Hence, dj divides every element of N ′j. That is,

dj | r + s+ n ∀n ∈ Ni

But since r + s ∈ Nj, we see that dj | r + s. Hence,

dj | n ∀n ∈ Ni

Thus, it follows that di ≥ dj. Using similar arguments, we also see that di ≤ dj.
This implies that di = dj, as desired.

We now state our first concrete result about when a limiting distribution exists.

Theorem 2.14

A finite, irreducible, aperiodic DTMC has a limiting distribution with strictly
positive entries

We state two lemmas (Lemma 2.15 and Lemma 2.18) before proceeding to prove
Theorem 2.14.

Lemma 2.15

Let A ⊆ N such that

1. gcd(A) = 1

2. A is closed under addition. That is, m,n ∈ A =⇒ m+ n ∈ A.
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Then, ∃n0 ∈ N such that n ∈ A for all n ≥ n0.

A proof of this Lemma is given below and may be skipped.

Proof of Lemma 2.15. We begin the proof by first stating and proving two more
lemmas.

Lemma 2.16

Let S ⊂ Z contain at least one non-zero element and be closed under addi-
tion and subtraction. Then S contains a least positive element a and S =
{ka : k ∈ Z}

Proof of Lemma 2.16. Let c ∈ S, c 6= 0. Then, c− c = 0 ∈ S and 0− c = −c ∈ S.
By trichotomy, S contains at least one positive element. Let a denote the smallest
positive element of S. Since S is closed under addition and subtraction, we see
that {ka : k ∈ Z} ⊆ S. Let c ∈ S. Then, c = ka + r where k ∈ Z and 0 ≤ r < a.
Since r = c − ka ∈ S, we cannot have r > 0 since this would contradict a being
the smallest positive element. Hence, we have r = 0 which gives c = ka. Thus,
S ⊆ {ka : k ∈ Z}. This completes the proof.

Lemma 2.17

Let a1, . . . , ak be positive integers with gcd d. Then, there exist n1, . . . , nk ∈ Z
such that d =

∑k
i=1 niai.

Proof of Lemma 2.17. The set S =
{∑k

i=1 niai : n1, . . . , nk ∈ Z
}

is closed under

addition and subtraction. Thus, by Lemma 2.16, S = {ka : k ∈ Z} where a =∑k
i=1 niai is the smallest positive integer in S. Since d divides all ai’s, d divides a

and hence 0 < d ≤ a. Also, each ai ∈ S and is therefore a multiple of a. Hence,
a ≤ gcd (a1, . . . , ak) = d. Therefore, d = a.

We now proceed to prove Lemma 2.15. For some k, 1 = gcd (a1, . . . , ak) where
a1, . . . , ak ∈ A. Thus, by Lemma 2.17,

1 =
k∑
i=1

niai

for some n1, . . . , nk ∈ Z. Separating the positive and negative terms in the above
equality, we have 1 = M −P where M,P ∈ A. Let n ∈ N such that n ≥ P (P −1).
We have n = aP +r where r ∈ [0, P −1]. We necessarily have a ≥ P −1, otherwise
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if a ≤ P − 2 then we have n = aP + r < P (P − 1). Using 1 = M − P , we have
n = aP + r(M − P ) = (a− r)P + rM . But a− r ≥ 0 and hence n ∈ A. Thus, we
have shown that any n sufficiently large (larger than P (P − 1) to be precise) lies
in A, as desired.

Lemma 2.15 when applied to DTMCs, gives us the following lemma.

Lemma 2.18

Given a finite, irreducible, aperiodic DTMC, ∃n0 ∈ N such that P n > 0 for all
n ≥ n0. That is, every entry of P n is strictly positive for all n ≥ n0.

Proof of Lemma 2.18. Pick an i ∈ S. Define

Ni :=
{
n : p

(n)
ii > 0

}
By aperiodicity, gcd(Ni) = 1 and by construction, Ni is closed under addition. We
may then use Lemma 2.15 to conclude that ∃n0(i, i) ∈ N such that

p
(n)
ii > 0 ∀n ≥ n0(i, i)

Now, pick another state j 6= i. By irreducibility, ∃ r ∈ N such that p
(r)
ij > 0. It is

then easy to observe that

p
(n)
ij > 0 ∀n ≥ n0(i, i) + r︸ ︷︷ ︸

n0(i,j)

Next, we define
n0 := max

i,j
n0(i, j)

Then, we see that
p
(n)
ij > 0 ∀ i, j ∈ S, ∀n ≥ n0

Thus, P n > 0 for all n ≥ n0.

Proof of Theorem 2.14. Pick any j ∈ S. We will track the jth column of P n, and
show that it converges to a constant column. Let en denote the jth column of P n.
We know that P n+1 = P · P n. It then follows that

en+1 = P · en
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Let Mn denote the maximum entry of en and let mn denote the minimum entry
of en. Since P is a stochastic matrix, the entries of en+1 are weighted averages of
entries of en. Thus, it follows that

Mn+1 ≤Mn and mn+1 ≥ mn ∀n ∈ N

That is, (Mn) is a decreasing sequence and (mn) is an increasing sequence. It is
also trivial that both these sequences are bounded. Thus, (Mn) and (mn) converge.
Now, we define

∆n := Mn −mn

Observe that (∆n) is also convergent. By Lemma 2.18, ∃n0 ∈ N such that P n0 > 0.
Let S denote the minimum entry of P n0 . We know that

en+n0 = P n0 · en

That is, entries of en+n0 are weighted averages of entries of en with weights drawn
from P n0 . Notice then that the minimum possible weight we can assign to any
entry of en is S. Thus, the maximum possible entry of en+n0 will be no more than
the value obtained by assigning a weight of S to mn and a weight of (1 − S) to
Mn. Similarly, the minimum entry of en+n0 will be no less than the value obtained
by assigning a weight of (1 − S) to mn and S to Mn. That is, the following two
inequalities hold

Mn+n0 ≤ (1− S) ·Mn + S ·mn

mn+n0 ≥ S ·Mn + (1− S) ·mn

Subtracting the two, we get

∆n+n0 ≤ (1− 2S) ·∆n

Note that (1− 2S) ∈ (0, 1) (Why?). It then follows that ∆n → 0 and hence,

lim
n→∞

Mn = lim
n→∞

mn =: lj

Hence, we have

lim
n→∞

en =

lj...
lj


which is a constant column vector, as desired. We have thus shown that the limit
of P n exists and it has our desired structure (all rows are identical). It remains to
show that

(i)
∑
j

lj = 1
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(ii) lj > 0 for all j ∈ S

We now prove (i). We know ∑
j∈S

p
(n)
ij = 1 ∀n ∈ N

Taking limit, we get

lim
n→∞

∑
j

p
(n)
ij = 1

Since the DTMC is finite, the above is a finite sum and hence, the limit can be
interchanged with the sum. Thus, we have∑

j

lim
n→∞

p
(n)
ij = 1 =⇒

∑
j

lj = 1

as desired. The proof of (ii) follows from Lemma 2.19 below.

Lemma 2.19

Let π be a stationary distribution of an irreducible DTMC. Then, π > 0.

Proof of Lemma 2.19. Since π is a stationary distribution, π = π · P . That is,

πi =
∑
k

πk · pki

Suppose πi = 0 for some i. From the above, it follows that πk = 0 for all k such
that pki > 0. Proceeding inductively, we see that πk = 0 for all k such that there
is a path from k to i. Since the DTMC is irreducible, the above set is the set of
all states of the DTMC, giving us π = 0 which is a contradiction (since π is a
distribution). Thus, we see that πi > 0 for all i ∈ S.

Now, note that we have already shown the existence of a limiting distribution l.
By Theorem 2.7, we have that this distribution l is also stationary. Lemma 2.19
then immediately tells us that l > 0, completing the proof of Theorem 2.14.

By virtue of Theorem 2.14, we now know that any finite, aperiodic and irreducible
DTMC has a limiting distribution with strictly positive entries which equals the
unique stationary distribution. To obtain this distribution, we generally solve a
system of linear equations corresponding to stationarity conditions, given by

π = π · P∑
i

πi = 1
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This task of finding the stationary distribution is often simplified by the use of
another interesting property, known as time-reversibility. This property is high-
lighted by the following theorem.

Theorem 2.20: Time-Reversibility

Given an irreducible DTMC, suppose there exists a distribution x = (xi, i ∈ S)
such that

xi · pij = xj · pji ∀ i, j ∈ S

Then x is a stationary distribution. In this case, we say that the DTMC is
time-reversible.

Notice that we do not require the DTMC to be aperiodic or even finite. The proof
for Theorem 2.20 is quite trivial and is illustrated below.

Proof. We need to show that xi · pij = xj · pji =⇒ x = x · P . We have

xi · pij = xj · pji ∀ i, j ∈ S

Summing over j, we get∑
j

xi · pij =
∑
j

xj · pji ∀ i ∈ S

Hence,

xi =
∑
j

xj · pji ∀ i ∈ S =⇒ x = x · P

The reason why these chains are called time-reversible is due to the following result
(proof is left as an exercise)

Proposition 2.21

Consider a time-reversible DTMC with stationary distribution π. If µ0 =
π,then the following is true for all i0, . . . , in ∈ S and for all n ∈ N

P (X0 = i0, . . . , Xn = in) = P (X0 = in, . . . , Xn = i0)

This result intuitively means that for a time-reversible DTMC, the probability of
any finite forward trajectory is same as the probability of the reverse trajectory.
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§3. Renewal Theory

§§3.1. Introduction

We now take a slight detour from our study of Markov chains to deal with Renewal
Theory and Renewal processes. We will then apply some of the ideas from renewal
theory to Markov chains. Informally, a renewal process is an arrival process with
i.i.d interarrival times. More formally, we define a renewal process as the following.

Definition 3.1: Renewal Process

Let {Xi}i≥1 be a sequence of positive, independent random random variables
denoting interarrival times. Assume further that {Xi}i≥2 are i.i.d. Define

Sn =
∑n

1 Xi. Sn denotes the time of the nth arrival/renewal. For t ≥ 0, we
define

N(t) := max {n : Sn(t) ≤ t}

The random process N(t) is called a renewal process and denotes the number
of arrivals or renewals in the interval (0, t]. We further define m(t) = E [N(t)]
to denote the expected number of arrivals in the interval (0, t].

These arrivals or renewals may be the arrival of buses at a bus stop, the arrival
of customers to a queue, failure instants of a component in a machine, instants
of Facebook posts by an individual, etc. We now make a few remarks about the
definition.

• X1 may have a different distribution compared to {Xi}i≥2 because X1 may
not be a true interarrival time. It is simply the time of the first arrival since
observation began.

• Since all Xi’s are positive, we don’t have multiple arrivals or renewals at the
once.

• {Xi}i≥1 may be continuous, discrete or hybrid.

• SN(t) is the time of the last arrival in (0, t]. SN(t)+1 is the time of the first
arrival after t. We then have

SN(t) ≤ t < SN(t)+1

• We also have the following equivalence

SN(t) ≤ t ⇐⇒ N(t) ≥ n
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We wish to study the long-term behaviour of renewal processes. The first question
we wish to answer is - what happens to N(t) and m(t) as t increases. Since the
interarrival times are finite with probability 1, we expect that both these quantities
blow off to infinity. This is formalised by the following Lemma.

Lemma 3.2

For a renewal process N(t) and m(t) = E [N(t)], we have

N(t)
t ↑∞−−→∞ with probability 1 (1)

m(t)
t ↑∞−−→∞ (2)

Proof. (1) follows directly from the fact that the every Xi is finite with probability
1. Thus, given any threshold M > 0, we have

N(t) ≥M ∀ t ≥ SM

Note that SM is finite with probability 1. This concludes that N(t) goes to infinity
with probability 1. For the second part, we see that

P (N(t) ≥ n) = P (Sn ≤ t)

The latter is the cumulative distribution function of SN(t) at t. Thus, we have

lim
t→∞

P (N(t) ≥ n) = 1

Thus, ∃ t0 such that

P (N(t) ≥ n) ≥ 1

2
∀ t ≥ t0

Thus, we have

m(t) ≥ n

2
∀ t ≥ t0

Since n can be made arbitrarily large, the result follows.

We are next interested in how fast N(t) and m(t) blow off to infinity. We will
henceforth denote by µ the expected interarrival time. That is, µ := E [X2]. Law
of Large Numbers would suggest that for large t, we would expect t

µ
arrivals in

the interval (0, t]. This idea is formalised by the following two theorems.
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Theorem 3.3: Strong Law of Large Numbers for Renewal Processes

Let N(t) be a renewal process and let µ = E [X2]. Then,

N(t)

t

t ↑∞−−→ 1

µ
with probability 1

Theorem 3.4: Elementary Renewal Theorem

Let N(t) be a renewal process and let µ = E [X2]. Then,

m(t)

t

t ↑∞−−→ 1

µ

These two theorems roughly say that N(t) and m(t) asymptotically grow linearly
in t with rate 1

µ
. Note that Theorem 3.4 is not a consequence of Theorem 3.3

and requires a separate proof. Contrary to its name, the Elementary Renewal
Theorem is not elementary and its proof is rather involved. This is not provided
here. However, a proof of SLNN for Renewal Processes follows directly from the
classical SLNN.

Proof of Theorem 3.3. First, we assume that µ < ∞. We will use the following
two results.

1. SLNN:
1

n− 1

n∑
i=2

Xi
n ↑∞−−−→ µ with probability 1

2. Lemma 3.2:
N(t)

t ↑∞−−→∞ with probability 1

Let Ω be the set of sample paths where SLNN holds and Ω′ be the set of sample
paths where Lemma 3.2 holds. We know P(Ω) = P(Ω′) = 1. Thus, P (Ω ∩ Ω′) = 1.
On Ω ∩ Ω′, we have

SN(t) ≤ t < SN(t)+1

∴
SN(t)

N(t)
≤ t

N(t)
<
SN(t)+1

N(t)

Thus, we have

X1

N(t)
+

1

N(t)

N(t)∑
i=2

Xi ≤
t

N(t)
<

X1

N(t)
+

1

N(t)

N(t)+1∑
i=2

Xi
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As t goes to infinity, N(t) goes to infinity on Ω ∩ Ω′. Thus, on Ω ∩ Ω′, we have

X1

N(t)

t ↑∞−−→ 0 by Lemma 3.2

N(t)∑
i=2

Xi
t ↑∞−−→ µ by SLNN

The result then follows by Sandwich Theorem.

When µ =∞, we resort to a truncation argument. We define

Y
(c)
i =

{
Xi if Xi ≤ c

c if Xi > c

where c is a truncation parameter. Let N (c)(t) denote the renewal process with

interarrival times given by Y
(c)
i . Note that N(t) ≤ N (c)(t) since Y

(c)
i ≤ Xi for all

i. Let µ(c) := E [Y2]. We have µ(c) < ∞ with probability 1. Thus, by the case for
finite expectation, we have

N (c)(t)

t

t ↑∞−−→ 1

µ(c)

Since N(t) ≤ N (c)(t), we have

lim sup
t→∞

N(t)

t
≤ 1

µ(c)

for any c > 0. Letting c ↑ ∞, we have µ(c) → ∞ (requires monotone convergence
theorem) and thus,

lim sup
t→∞

N(t)

t
≤ 0

Since N(t)
t

is non-negative, it follows that

N(t)

t

t ↑∞−−→ 0 with probability 1

Another natural question to ask is - what is the limit of m(h + t) − m(t) as t
goes to infinity. That is, what happens to the expected number of arrivals in the
interval (t, t+h] as t goes to infinity. We would expect this limit to be h

µ
. However,

this only holds under some conditions. For example, if the interarrival times are
“periodic” (only multiples of 2, for example), then such a limit may not even exist
if we make h small enough. This idea is formalised by another theorem which
we shall encounter very soon. Before that, we define what it means for a random
variable to be arithmetic.
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Definition 3.5: Arithmetic Random variable

A random variable is said to be arithmetic if it only takes values that are
integer multiples of a real number d > 0. The span of the random variable is
the largest d such that this holds

For example, a random variable taking values in {2, 5, 7.5, 10} with positive prob-
abilities is arithmetic with span 2.5. A random variable taking values on Z+

is necessarily arithmetic and its span is the gcd of the values taken with posi-
tive probability. It also follows trivially that any continuous random variable is
non-arithmetic. We now state without proof another important theorem which
formalises the previous idea.

Theorem 3.6: Blackwell’s Renewal Theorem

Given a renewal process, if {Xi}i≥2 are non-arithmetic then for all h > 0, we
have

m(t+ h)−m(t)
t ↑∞−−→ h

µ

If {Xi}i≥2 are arithmetic with span d and X1 is arithmetic with span ld with
l ∈ N then

lim
k→∞

P (arrival at time kd) =
d

µ

To motivate why we are venturing into Renewal Theory, we present a simple
example for the Gilbert-Elliot Model. Recall that the TPD for the Gilbert-Elliot
model was given by

1 21− a
a

1− b

b

Assume that 0 < a, b < 1. We know from previous experience that

π =
[

b
a+b

a
a+b

]
Now, let us consider this DTMC as a renewal process with renewals being visits
to state 1. Thus, µ denotes the mea return time to state 1 and N(t) captures the
number of visits to state 1 until time t. From the strong law of large numbers, we
see that

N(t)

t

t ↑∞−−→
a.s

1

µ
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Note, however, that by definition, the limit on the left is in fact the first element
of the time-averaged distribution, θ1. Thus, renewal theory tells us that

θ1 =
1

µ

It is also easy to compute µ. This is left as an exercise. It turns out that µ =
a+b
b

= 1
π1

. Hence, we get

θ1 =
1

µ
= π1

Similar arguments also show that, θ2 = π2. Thus, we see that

θ = π = l

That is, all three distributions of interest coincide. Thus, renewal theory helped us
tackle the time-averaged distribution for the simple Gilbert-Elliot case. We shall
see that on developing some more theory, we will be able to state and prove deeper
and more general results.

§§3.2. The Inspection Paradox: Motivation

We now develop the motivation for our next topic with the help of a famous
probability riddle - the inspection paradox. Consider a renewal process where the
renewals denote the arrival of buses at a bus stop. The question is as follows
- you arrive at the bus stop at a random time. What is your average waiting
time? Intuition would lead you to say µ

2
since on an average you’re somewhere in

the middle of two arrivals. However, that is not correct. You are more likely to
land in an interval of longer length and hence your average waiting time would be
more than µ

2
. The precise answer really is that it depends on how the interarrival

times are distributed. Note that we are now in the realm of continuous time. For
argument’s sake, suppose that µ = 10 minutes. That is, the expectation of the
interarrival times is fixed at 10 minutes. It turns out that the following are true:

• If the interarrival times are deterministic, then the expected waiting time is
5 minutes

• If the interarrival times are exponential, then the expected waiting time is
10 minutes (memorylessness?)

• If the interarrival times are degenerate hyperexponential (0 with probabil-
ity 0.5 and exponential with parameter 1

20
with probability 0.5) then the

expected waiting time is 20 minutes
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Thus, there is no fixed answer to the ‘paradox’. We will soon show that the
expected waiting time is equal to 5 minutes only for the deterministic case and
is greater than 5 minutes for all other distributions. We will also find an explicit
expression for the expected waiting time.

A final note: Determinism is the best public policy! If passengers are arriving ran-
domly at a bus stop, then the buses must determinstically arrive at fixed intervals
for the expected waiting time to be minimised for the passengers. Any deviation
from this would only increase the waiting time.

§§3.3. Renewal-Reward Theory

On top of a renewal process, we may also add a reward signal, most typically
denoted by R(t). This reward signal denotes the instantaneous ‘reward’ at time
t. We further assume that the value of R(t) only depends on the present renewal
cycle. Motivated by the bus stop example, we may define the reward signal to be
the waiting time. The total reward accumulated in the nth renewal cycle is defined
as

Rn :=

∫ Sn

Sn−1

R(s) ds

with S0 being defined as 0. Further, we assume that {(Xn, Rn)}n≥1 are independent
and {(Xn, Rn)}n≥2 are i.i.d. Note that Xn and Rn may depend on each other.

As a simple example, given a renewal process N(t) with interarrival times {Xi}i≥1,
define R(t) := time until next arrival. You should convince yourself that the
following is true:

R(t) = SN(t)+1 − t
The cumulative reward can then be calculated as

Rn =
1

2
X2
n

Now, {(Xn, Rn)}i≥1 defines a renewal-reward process.

Theorem 3.7: Renewal-Reward Theorem

Given a renewal-reward process with reward signal R and interarrival times
Xi, we have

1

t

∫ t

0

R(s) ds
t ↑∞−−→
a.s

E[R2]

E[X2]

We shall prove this theorem soon. Intuitively, it says that the long run time-
averaged reward equals the expected reward in a cycle divided by the expected
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length of a cycle. Let us now apply this theorem to the inspection paradox. We
have R(t) = SN(t)+1 − t and Rn = 1

2
X2
n. Thus, the expected waiting time is given

by

E[waiting time] =
E[R2]

E[X2]
=

1

2

E[X2
2 ]

E[X2]

Since we know E[X2
2 ] ≥ (E[X2])

2 with inequality only holding for the deterministic
distribution, we immediately see that

E[waiting time] ≥ µ

2

Thus, the expected waiting time is always greater than µ
2

and it is equal to µ
2

only
when the distribution is deterministic, proving our earlier claim. Notice that for
heavy-tailed distributions, it possible that the average interarrival time between
buses is 10 minutes and yet the average waiting time is infinity (when the second
moment is infinity)!

Proof of Theorem 3.7. Without loss of generality, we may assume the reward to
be non-negative. If not, we can separate out the positive and negative parts of
the reward and apply the following arguments to each part individually. The total
reward accumulated upto time t lies between the sum of the cumulative rewards
of the first N(t) renewal cycles and the first N(t) + 1 renewal cycles (since the
reward is non-negative). Hence, we have

1

t

N(t)∑
i=1

Ri ≤
1

t

∫ t

0

R(s) ds ≤ 1

t

N(t)+1∑
i=1

Ri

∴
N(t)

t
· 1

N(t)

N(t)∑
i=1

Ri ≤
1

t

∫ t

0

R(s) ds ≤ N(t) + 1

t
· 1

N(t) + 1

N(t)+1∑
i=1

Ri

Letting t → ∞ and on a trivial application of SLNN and Sandwich Theorem, we
conclude that

1

t

∫ t

0

R(s) ds
t ↑∞−−→
a.s

E[R2]

E[X2]

Note that the reward need not be ‘continuous’ and can be one-shot. That is, the
entire cumulative reward for a renewal cycle can be received in one go at the start
or end or at any point in the middle of the renewal cycle. In this case, the integral
on the left hand side of Theorem 3.7 is not well-defined but as long as the integral
on the left hand side is interpreted as the total reward accumulated upto time t,
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the theorem holds. Notice however that in the inspection paradox, we are not
looking for a time-averaged waiting time as is prescribed by the Renewal-Reward
Theorem. What we are really interested in, is E[R(t)]. We have the following
useful result for the same.

Theorem 3.8

Suppose {(Xn, Rn)}n≥1 is a renewal-reward process and {Xi}i≥1 are non-arithmetic.
Then, under mild regularity conditions,

lim
t→∞

E [R(t)] =
E[R2]

E[X2]

Rather than a time-averaged behaviour, this theorem talks about the limiting
behaviour of the reward signal after a very long time. Notice that in this case, we
need R(t) to be well-defined and hence one-shot rewards are not possible.
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§4. Countable State-Space DTMCs

§§4.1. Classification of States

We will now use our knowledge of renewal theory to generalise some of the ideas
for finite DTMCs to countable DTMCs. We start off with some definitions.

f
(n)
ij := P (Xn = j,Xk 6= j for 1 ≤ k ≤ n− 1 | X0 = i)

Intuitively, f
(n)
ij is the probability that the first visit to state j starting at state i

occurs in n steps. Notice that f
(n)
ij ≤ p

(n)
ij . We also define

fij :=
∞∑
n=1

f
(n)
ij

fij is the probability of ever hitting state j starting at state i. If fij < 1, then
there is a positive probability of never reaching state j starting from state i. If
fij = 1 then the DTMC will hit state j starting from state i with probability 1.
In the second case, it is meaningful to define another random variable, Tij which

is the hitting time of state j starting at state i. When fij = 1, f
(n)
ij describes the

p.m.f of Tij. Moreover, we define

νij := E [Tij] =
∞∑
n=1

n · f (n)
ij

νij is the expected hitting time of state j starting at state i. We classify the states
of a DTMC as follows.

Definition 4.1: Classification of States

Given a DTMC, a state i is said to be transient if fii < 1 and is said to be
recurrent if fii = 1. A recurrent state is further classified as null-recurrent if
νii =∞ and positive-recurrent if νii <∞.

We will also be interested in knowing the mean number of returns to a state. For
this purpose, we define

Mi :=
∞∑
k=1

1{Xk=i}

Mi denotes the number of visits to state i. The expected number of returns to
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state i, starting from state i is then given by

E [Mi | X0 = i ] = E

[
∞∑
k=1

1{Xk=i} | X0 = i

]

=
∞∑
k=1

E
[
1{Xk=i} | X0 = i

]
=
∞∑
k=1

P (Xk = i | X0 = i)

∴ E [Mi | X0 = i ] =
∞∑
k=1

p
(k)
ii

Lemma 4.2

For a transient state i, with X0 = i, the number of returns to i is finite with
probability 1. Further, the expected number of returns is also finite and thus

∞∑
k=1

p
(k)
ii <∞

Proof. The proof of the above Lemma follows rather trivially by observing that
the probability of the number of returns being k is given by fkii · (1− fii). This
is a shifted geometric distribution and hence, the number of returns is finite with
probability 1. Further, the expectation is given by

fii
1− fii

which is finite for transient states since fii < 1.

We have a similar lemma for recurrent states. As expected, the number of returns
turns out to be infinite. Interestingly, if we look at the limit of the time-averaged
number of returns, that helps us classify recurrent states into positive or null. This
is formalised below.
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Lemma 4.3

For a recurrent state i, with X0 = i, the number of returns to i is infinite with
probability 1. The expected number of returns is also infinite and thus

∞∑
k=1

p
(k)
ii =∞

Further, we have

lim
n→∞

1

n

n∑
k=1

p
(k)
ii =

{
0 if i is null-recurrent
1
νii

if i is positive-recurrent

Proof. We define a renewal process with Sn denoting the time of the nth return
to state i with X0 = i. {Sn}n≥1 are i.i.d with mean νii. Note that this renewal
process is only well-defined because interarrival times are finite with probability 1.
Then, N(n) is the number of returns to state i by time n and m(n) is the expected
number of returns to state i by time n. Formally, we have

N(n) =
n∑
k=1

1{Xk=i}

and

m(n) =
n∑
i=1

p
(k)
ii

By statements 1 and 2 of Lemma 3.2, we immediately get

N(n)
n ↑∞−−−→
a.s
∞

m(n)
n ↑∞−−−→∞

By applying the elementary renewal theorem (Theorem 3.4), we get

m(n)

n

n ↑∞−−−→ 1

µ

Note that for µ = ∞, we interpret the right hand side as 0. Thus, the third
statement of the lemma follows trivially.
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To summarise, we have the following equivalences:

i is transient ⇐⇒
∞∑
k=1

p
(k)
ii <∞

i is null-recurrent ⇐⇒
∞∑
k=1

p
(k)
ii =∞ and lim

n→∞

1

n

∞∑
k=1

p
(k)
ii = 0

i is positive-recurrent ⇐⇒
∞∑
k=1

p
(k)
ii =∞ and lim

n→∞

1

n

∞∑
k=1

p
(k)
ii > 0

For irreducible DTMCs, we have the following remarkable theorem.

Theorem 4.4

All states of an irreducible DTMC are of the same type - transient or null-
recurrent or positive-recurrent. In this case, we call the entire DTMC transient
or null-recurrent or positive-recurrent.

Proof. Pick any two states i, j ∈ S with i 6= j. By irreducibility, ∃ r, s ∈ N such
that p

(r)
ji > 0 and p

(s)
ij > 0, We have

p
(r+s+k)
jj ≥ p

(r)
ji · p

(k)
ii · p

(s)
ij

Summing with respect to k, we get

n∑
k=1

p
(r+s+k)
jj ≥ p

(r)
ji · p

(s)
ij ·

n∑
k=1

p
(k)
ii

We may further write

r+s+n∑
k=1

p
(k)
jj ≥ p

(r)
ji · p

(s)
ij ·

n∑
k=1

p
(k)
ii (1)

Now, suppose j is transient. Then, taking limits on both sides, we have

∞ >

∞∑
k=1

p
(k)
jj ≥ p

(r)
ji · p

(s)
ij ·

∞∑
k=1

p
(k)
ii =⇒

∞∑
k=1

p
(k)
ii <∞

Thus, the transience of j implies the transience of i. But i, j were arbitrary. Hence,
if any one state is transient then all others are transient.
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Suppose j is null-recurrent. From equation (1), we have

1

n

r+s+n∑
k=1

p
(k)
jj ≥ p

(r)
ji · p

(s)
ij ·

(
1

n

n∑
k=1

p
(k)
ii

)

As n→∞, the LHS has a limit of zero. Hence, we get

lim sup
n→∞

1

n

n∑
k=1

p
(k)
ii ≤ 0

Since the above sequence is non-negative, we have

lim
n→∞

1

n

n∑
k=1

p
(k)
ii = 0

Since j is not transient, i cannot be transient either. Hence, i must be null-
recurrent. Thus, if one state is null-recurrent, all states are null-recurrent. The
proof for positive-recurrent follows rather trivially from the above two parts on
noting that a state can be only one of three - transient, null-recurrent or positive-
recurrent.

Thus, to summarise, we have three kinds of irreducible DTMCs - transient chains,
null-recurrent chains and positive-recurrent chains.
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§§4.2. Transient Chains

We now begin studying transient chains. It turns out that there is no meaningful
long-run behaviour for transient chains, hence they are of no practical importance
to us. Nonetheless, we will formalise the long-run behaviour of transient chains
for the sake of completeness.

Theorem 4.5

For an irreducible, transient chain, the following hold true

1. For any j ∈ S,
∞∑
k=1

1{Xk=j} <∞ almost surely

Thus, there is no time-averaged distribution for irreducible transient
chains.

2. For any i, j ∈ S, we have
∞∑
k=1

p
(k)
ij <∞

3.
lim
k→∞

p
(k)
ij = 0 ∀ i, j ∈ S

Hence, there is no limiting distribution for irreducible transient chains.

4. There is no stationary distribution.

As we see, there is no meaningful long-run behaviour for transient chains.

Proof. 1. Let Mj be the number of visits to state j over time k ≥ 1 and let pj
be the probability of once reaching j after time 0. Then, we have

P (Mj = 0) = 1− pj

P (Mj = k) = pj · fk−1ii · (1− fii)

Since this is a valid, non-degenerate p.m.f, we see that Mj is finite with
probability 1.

2. Let X0 = i. From the above p.m.f, we have E [Mj] <∞. But, we see that

E [Mj] =
∞∑
k=1

p
(k)
ij
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Thus, the second result follows.

3. Follows from 2.

4. Pick some state i ∈ S. We have

P (Xn = i) = µn(i) =
∑
j∈S

µ0(j) · p(n)ji

Taking limits on both sides, we get

lim
n→∞

µn(i) = lim
n→∞

∑
j∈S

µ0(j) · p(n)ji

By the Dominated Convergence Theorem, we may switch the limit with the
summation. Hence, we get

lim
n→∞

µn(i) =
∑
j∈S

µ0(j) · lim
n→∞

p
(n)
ij

∴ lim
n→∞

µn(i) = 0 ∀ i ∈ S

Suppose a stationary distribution π existed. Then, ∃ i ∈ S such that πi > 0.
Suppose further that µ0 = π. Then µn = π for all n, by virtue of stationarity.
Thus, µn(i) = πi > 0 for all n, however this contradicts limn→∞ µn(i) = 0.
Thus, no stationary distribution can exist.

A common example of a transient chain is what is known as the Drunkard’s Ran-
dom Walk, which is a random walk on Z. Starting at 0, at every time step, the
drunkard moves right with probability p and left with probability q = 1− p. The
behaviour of this chain is characterised by

∞∑
n=1

p
(n)
00

Since the drunkard may return to state 0 only after an even number of steps, we
shall look at

∞∑
n=1

p
(2n)
00

Also note that we have

p
(2n)
00 =

(
2n

n

)
· pn · qn
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We will make use of asymptotic notation. Namely, we have the following notation

f(n) ∼ g(n) ⇐⇒ lim
n→∞

f(n)

g(n)
= 1

We will also make use of Stirling’s approximation of the factorial, that is

n! ∼
(n
e

)n√
2πn

Thus, we get

p
(2n)
00 ∼

(4pq)n√
πn

We will now consider two cases.

Case 1: p 6= q. This is a biased random walk. We have

pq <
1

4
⇐⇒ 4pq < 1

Thus, we have

p
(2n)
00 ∼

an√
πn

with a ∈ (0, 1). Given any ε > 0, there exists n0 ∈ N such that

(1− ε) · an√
πn
≤ p

(2n)
00 ≤ (1 + ε) · an√

πn
∀n ≥ n0

Now,
∞∑
n=1

p
(2n)
00 =

n0−1∑
n=1

p
(2n)
00 +

∞∑
n=n0

p
(2n)
00 <∞

Thus, the chain is transient.

Case 2: p = q = 1
2
. This is an unbiased random walk. We have

pq =
1

4
⇐⇒ 4pq = 1

Thus,

p
(2n)
00 ∼

1√
πn

We immediately see that
∞∑
n=1

p
(2n)
00 =∞
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Hence, the chain is recurrent. Similar to the first case, given any ε > 0, there
exists n0 ∈ N such that

1− ε√
πn
≤ p

(2n)
00 ≤ 1 + ε√

πn
∀n ≥ n0

Thus, we have

1

2n

∞∑
k=1

p
(2k)
00 ≤

1

2n

n0−1∑
k=1

p
(2k)
00 +

1 + ε

2n

n∑
k=n0

1√
πn

Letting n→∞, we see that

lim sup
n→∞

1

2n

n∑
k=1

p
(2k)
00 ≤ 0

and hence,

lim
n→∞

1

2n

n∑
k=1

p
(2k)
00 = 0

Hence, the chain is null-recurrent.

§§4.3. Recurrent Chains

We now talk about recurrent chains. The first result we prove is that in an irre-
ducible recurrent chain, every state is visited with probability 1 regardless of the
starting state.

Lemma 4.6

In an irreducible, recurrent chain,

fij = 1 ∀ i, j ∈ S

Proof. We prove this by contradiction. Suppose fij < 1 and suppose X0 = j.
With some positive probability, p, the chain visits state i before returning to state
j. Hence, with probability p(1−fij), the chain never returns to j. This contradicts
fjj = 1.

The next theorem talks about the long-run behaviour of recurrent chains. We will
later show that this theorem tells us that for null-recurrent chains, no meaningful
long-run behaviour exists.
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Theorem 4.7

Consider an irreducible recurrent chain. For any j ∈ S, we define

Mj(n) :=
n∑
k=1

1{Xk=j}

Mj(n) counts the number of visits to state j after time 0 and up to time n.
Then, we have

1.
Mj(n)

n

n ↑∞−−−→
a.s

1

νjj

2.
E [Mj(n) | X0 = i]

n
=

1

n

n∑
k=1

p
(k)
ij

n ↑∞−−−→ 1

νjj

3. If the chain is aperiodic, then

p
(n)
ij

n ↑∞−−−→ 1

νjj

An immediate corollary of Theorem 4.7 when specialised to null-recurrent and
positive-recurrent chains, is that for null-recurrent chains, there is no time-averaged
distribution. If also aperiodic, there is no limiting distribution either. For aperi-
odic, irreducible, positive-recurrent chains, a meaningful time-averaged distribu-
tion and limiting distribution exists so long as∑

j

1

νjj
= 1

We will soon prove that this is indeed the case.

Proof. 1. Define a renewal process with renewals at visits to state j after time
0. Let {Yi} denote the inter-renewal times. By Lemma 4.6, Y1 is finite with
probability 1. Further, {Yi}i≥2 are i.i.d with mean νjj. A trivial application
of SLNN for renewal processes (Theorem 3.3) gives us

Mj(n)

n

n ↑∞−−−→
a.s

1

νjj

2. Consider the same renewal process as above specialised with X0 = i. Then,
the the numerator of the RHS is the expected number of renewals up to
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time n. Thus, the statement follows by the Elementary Renewal Theorem
(Theorem 3.4).

3. Consider the same renewal process as before. {Yi}i≥2 are arithmetic with

span d′j := gcd
{
n : f

(n)
jj > 0

}
. Let dj := gcd

{
n : p

(n)
jj > 0

}
. By aperiodicity,

dj = 1. In Lemma 4.8, which shortly follows the proof of this theorem, we
show that d′j = dj. Hence, by application of Blackwell’s Renewal Theorem
(Theorem 3.6), we see that

lim
n→∞

p
(n)
ij =

1

νjj

Lemma 4.8

For any state j ∈ S, let Nj :=
{
n : p

(n)
jj > 0

}
and N ′j :=

{
n : f

(n)
jj > 0

}
. Then,

gcd(Nj) = gcd(N ′j).

Proof. Let dj := gcd(Nj) and d′j := gcd(N ′j). We know that f
(n)
jj ≤ p

(n)
jj . Hence,

N ′j ⊆ Nj. Thus, d′j ≥ dj. Further, any element of Nj is a sum of elements of N ′j.
Hence, d′j divides every element of Nj. Thus, d′j ≤ dj. Hence, dj = d′j.

Lemma 4.9

Any finite, irreducible DTMC is necessarily positive-recurrent.

Proof. Let S be the state-space of the DTMC. S is finite. As done before, we
define

Mj(n) :=
n∑
k=1

1{Xk=j}

Observe that ∑
j ∈S

Mj(n) = n ∀n ∈ N

Hence, we get

lim
n→∞

1

n

∑
j ∈S

Mj(n) = 1
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Since the first summation is finite, we may exchange the limit with the summation.
Thus, we get ∑

j ∈S

lim
n→∞

Mj(n)

n
= 1

Now, suppose that the chain was either transient or null-recurrent. Theorems 4.5
and 4.7 tell us that for both cases

Mj(n)

n

n ↑∞−−−→
a.s

0 ∀ j ∈ S

Hence, this violates the condition we laid out before since a finite number of zeroes
cannot possibly add up to 1. Hence, the chain must be positive-recurrent.

Now, we lay down the ‘big’ theorem which completely characterises the long-run
behaviour of positive-recurrent chains.

Theorem 4.10

An irreducible DTMC is positive-recurrent if and only if there exists a prob-
ability distribution π such that π = π · P . Such a π is unique, element-wise
positive and

πi =
1

νii

Proof. Since this is an if and only if statement, we must prove both implications.
We first prove the backward implication. Suppose there exists a stationary dis-
tribution π. By Lemma 2.19, π > 0, entry-wise. Also, the chain is necessarily
recurrent since transient chains don’t have a stationary distribution. Consider the
DTMC with µ0 = π. Using the same definition for Mj(n) as before, we get

E [Mj(n)] = n · πj =⇒ 1

n
E [Mj(n)] = πj

Thus, we also have

lim
n→∞

1

n
E [Mj(n)] = πj

We also have

1

n
E [Mj(n)] =

∑
i∈S

1

n
E [Mj(n) | X0 = i] · πi =

∑
i∈S

πi ·

(
1

n

n∑
k=1

p
(k)
ij

)
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We now take limit n→∞. An application of the Dominated Convergence Theo-
rem allows us to switch the sum with the limit. Thus, we have

lim
n→∞

1

n
E [Mj(n)] =

∑
i∈S

πi · lim
n→∞

(
1

n

n∑
k=1

p
(k)
ij

)
=
∑
i∈S

πi ·
1

νjj
=

1

νjj

Hence, we get

πj =
1

νjj

Since, πj > 0, we have νjj < ∞. Thus, the chain is positive-recurrent. Since νjj
is unique, the stationary distribution is also unique. This concludes the proof for
the backward implication.

Suppose now that the chain is positive-recurrent. We have to show that there
exists a stationary distribution. Define a vector

π =

(
1

νjj
, j ∈ S

)
At this point, this is just a vector and not necessarily a distribution (it will turn out
to be one). π > 0 since νjj is finite. Let a(n) denote the first row of 1

n

∑n
k=1 P

k and

let b(n) denote the first row of 1
n

∑n+1
k=2 P

k. By definition, we see that b(n) = a(n) ·P .
Also,

a
(n)
j =

1

n

n∑
k=1

p
(k)
1j

Thus, a
(n)
j

n ↑∞−−−→ πj. Similarly, we have b
(n)
j

n ↑∞−−−→ πj. we have

b
(n)
j =

∑
i

a
(n)
i pij ≥

M∑
i=1

a
(n)
i pij

Letting n go to ∞, we have

πj ≥
M∑
i=1

πi · pij

Now letting, M go to ∞, we have

πj ≥
∞∑
i=1

πi · pij︸ ︷︷ ︸
βj

=⇒ πj ≥ βj ∀ j ∈ S
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Note that ∑
j ∈S

a
(n)
j = 1 =⇒

M∑
j=1

a
(n)
j ≤ 1

Letting n go to ∞, we get
M∑
j=1

πj ≤ 1

Letting M go to ∞, we see that

∞∑
j=1

πj ≤ 1

Hence, π is summable. Summing βj over all j, we get∑
j

βj =
∑
j

∑
i

πi · pij =
∑
i

πi
∑
j

pij =
∑
i

πi︸ ︷︷ ︸)α
Thus, we have ∑

j

πj =
∑
j

βj and πj ≥ βj ∀ j ∈ S

This gives us that
πj = βj ∀ j ∈ S =⇒ π = π · P

Thus, π
α

is a stationary distribution. In conjunction with part 1, we can also
conclude that α = 1 and hence π itself is a stationary distribution.

To summarise, for irreducible positive-recurrent chains, we have a unique sta-
tionary distribution, π. Moreover, the time-averaged distribution, θ, exists and
θ = π. If the chain is also aperiodic, then there exists a limiting distribution l
and l = θ = π. Thus, we have managed to completely characterise the long-run
behaviour of every kind of irreducible DTMC.

We now take an interesting look at stationarity and time-reversibility through
renewal-reward theory.

Lemma 4.11

Consider an irreducible positive-recurrent DTMC. For any i, j ∈ S, the long-
run rate of i→ j transitions equals πi · pij.
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Proof. Define a renewal process where renewals are visits to state i and the reward
is 1 if the immediate next state is j and 0 otherwise. Then, the number of i → j
transitions up to time n is exactly equal to the reward accumulated till time n.
The expected reward in a single cycle is pij. The expected length of a renewal
cycle is νii. Let Mij(n) be the number of i → j transitions up to time n. Thus,
Renewal-Reward Theorem (Theorem 3.7) tells us that

Mij(n)

n

n ↑∞−−−→
a.s

pij
νii

= πi · pij

Using Lemma 4.11, let us see a different interpretation of stationarity. We have

πi =
∑
j

πj · pji =⇒
∑
i

πi · pij =
∑
j

πj · pji

The second equation simply states that the rate of exiting state i is equal to the
rate of entering state i. This is a very intuitive interpretation of the stationarity
equations. The key thing to note is that the rate of exiting state i and entering
state i from each state need not be equal. Only the total rate of exiting and
entering state i must balance. If we also have that every rate individually balances,
the chain is time-reversible! Thus, time-reversibility may be re-interpreted as the
rates of i → j transitions being equal to j → i transitions for all i, j ∈ S. Thus,
stationarity talks about a global balance whereas time-reversibility talks about a
finer local balance.

So far, the only method we know to establish the positive recurrence is to look for
the existence of a stationary distribution. Another interesting method to estab-
lish the positive recurrence of an irreducible chain is through Lyapunov Stability
Analysis, which is characterised by the following theorem.

Theorem 4.12: Foster-Lyapunov Theorem

Consider an irreducible DTMC over a countable state space S. Suppose
V : S → R+ and C is a finite subset of S. If there exists ε > 0 and b <∞ such
that

1. E [V (Xk+1)− V (Xk) | Xk = i] ≤ −ε ∀ i ∈ S \ C

2. E [V (Xk+1)− V (Xk) | Xk = i] ≤ b ∀ i ∈ C

then, the DTMC is positive recurrent.
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V is called a Lyapunov function. This theorem says that the DTMC is positive
recurrent if the expected ‘drift’ of the Lyapunov function is sufficiently negative
for all but finitely many states and is finite for those finitely many states.

We will consider another interesting application of Lyapunov stability, concerned
with routing incoming packets to two different queues. We will consider the arrival
of incoming packets to be BP (a) and the service at the two queues to be BP (d1)
and BP (d2). It is easy to show that we must have a < d1 + d2 for stability. Given
that we have a < d1 + d2, how do we stabilise the system? A simple policy is to
choose p such that ap < d1 and a(1− p) < d2 and route each job to queue 1 with
probability p and to queue 2 with probability (1 − p). One drawback about this
policy is that it may turn out to be inefficient. For example, one queue may have
a hundred jobs lined up while the other is empty and yet we may route a new job
to the first queue. Another drawback is that we require the knowledge of a, d1, d2
to determine the policy, while this may not be available.

A rather simple but effective policy, is to route the job to the shortest queue.
We will show that this simple policy stabilises the system. Formally, we will let
Xi be the number of jobs waiting at queue i. We will consider our states to be
(X1, X2) ∈ Z2

+. We will route the new job to queue 1 if X1 ≤ X2 and to queue
2 if X1 > X2. Proving the positive recurrence of this chain (and stability of the
system) by finding the stationary distribution is quite hopeless. Instead, we will
use a Lyapunov approach. We define the Lyapunov function as

V (X) :=
X2

1 +X2
2

2

The update equations are as follows:

Xi(t+ 1) = Xi(t) + Ai(t)−Di(t) + Li(t)

where
A1(t) = A(t) · 1{X1≤X2} ; A2(t) = A(t) · 1{X1>X2}

with A(t) ∼ BP (a). We also have Di(t) ∼ BP (di). The term Li(t) is a correction
term to disallow departures when the queue is empty. We have

Li(t) = 1{Xi(t)+Ai(t)−Di(t)=−1}
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We then have

∆(X) := E [V (X(k + 1))− V (X(k)) | X(k) = x]

=
1

2

2∑
i=1

E
[
X2
i (k + 1)−X2

i (k) | X(k) = x
]

=
1

2

2∑
i=1

E
[
(Xi + Ai −Di + Li)

2 −X2
i | X = x

]
≤ 1

2

2∑
i=1

E
[
(Xi + Ai −Di)

2 −X2
i (k) | X(k) = x

]
=

1

2

2∑
i=1

E

2 ·Xi · (Ai −Di) + (Ai −Di)
2︸ ︷︷ ︸

≤1

| X(k) = x


≤ 1 +

2∑
i=1

E [Xi · (Ai −Di) | X(k) = x]

= 1 +X1 ·
(
a · 1{X1≤X2}

)
−X1D1 +X2 ·

(
a · 1{X1>X2}

)
−X2D2

Thus, we get
∆(X) ≤ 1 + a ·min (X1, X2)−X1D1 −X2D2

Now, we pick p ∈ (0, 1) such that ap < d1 and a(1− p) < d2 (this is possible since
a < d1 + d2). Thus, we get

∆(X) ≤ 1 + a · a (pX1 + (1− p)X2)−X1D1 −X2D2

= 1 + (ap− d1︸ ︷︷ ︸
<0

+ (a(1− p)− d2)︸ ︷︷ ︸
<0

Now, for an ε > 0, it suffices to have

X1 ≥
1 + ε

d1 − ap
or X2 ≥

1 + ε

d2 − a(1− p)

to make ∆(X) ≤ −ε. Thus if we choose

C :=

{
(x1, x2) ∈ Z2

+ | 0 ≤ x1 ≤
⌈

1 + ε

d1 − ap

⌉
and 0 ≤ x2 ≤

⌈
1 + ε

d2 − a(1− p)

⌉}
Then, we have ∆(x) ≤ −ε for all x ∈ S \ C. Thus, by the Foster-Lyapunov
Theorem, the chain is recurrent and hence the system is stable.
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§5. Exponential Distributions and Poisson

Processes

Before moving on to continuous time Markov chains, we will review some properties
about the exponential distribution and Poisson processes.

Definition 5.1: Exponential Random Variable

A random variable X is said to be exponential with parameter λ (λ > 0) if X
has support on R+ and

fX(x) = λe−λx

We denote this as X ∼ Exp(λ).

An exponential random variable is also often characterised by its complementary
cdf or tail distribution, as follows

FX(x) = P(X > x) = e−λx

The expectation and variance of an exponential random variable are given by

E[X] =
1

λ
; Var(X) =

1

λ2

One of the most crucial properties of exponential random variables is memoryless-
ness. That is, for an exponential random variable X, we have

FX(t+ s) = FX(t) · FX(s) ∀ t, s ≥ 0

This further translates to

P(X > t+ s | X > t) = P(X > s)

It is also interesting to note that exponential random variables are the only ones
having the memorylesssness property.

The exponential distribution is quite connected to the geometric distribution and
can be thought of as a ‘continuous analogue’ of the geometric distribution. To
illustrate this idea, consider that we discretise time into small δ-steps. At all times
nδ, we toss a coin with a success probability of λδ. Let Y denote the time of the
first head. Then we have

Y = δ ·N
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where N ∼ Geo(λδ). Now,

P(Y > t) = P
(
N >

t

δ

)
= P

(
N >

⌊
t

δ

⌋)
= (1− λδ)b

t
δc

As δ → 0, we see
P(Y > t)→ e−λt =⇒ Y → Exp(λ)

Lemma 5.2

Suppose X1, . . . , Xn are independent exponential random variables with pa-
rameters λ1, . . . , λn. Define

τ := min
1≤i≤n

Xi I := arg min
1≤i≤n

Xi

Then, the following hold.

1. τ ∼ Exp (
∑n

i=1 λi)

2. P(I = i) =
λi
n∑
j=1

λj

3. τ and I are independent.

A proof of Lemma 5.2 is left as an exercise. An interesting real-world application
of the above lemma is as follows. Suppose that a server can fail due to either a
disk failure or a power supply failure. Let the disk lifetime be exponential with
parameter 1

1000
and let the power supply lifetime be exponential with parameter

1
500

. Let XD and XP denote the time of the failures of the disk and power supply
respectively. Then, the time of failure of the server is given by τ = min(XD, XP )
and the cause of failure is given by I = arg min(XD, XP ). From Lemma 5.2, we
can conclude that τ ∼ Exp

(
3

1000

)
and that the probability of the power supply

being the cause of the failure is 2
3
.

Next, we move on to Poisson processes, which can be thought of as continuous-
time generalisations of Bernoulli processes. First, we look at what is a counting
process.
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Definition 5.3: Counting Process

A counting process {N(t)}t≥0 is a stochastic process where N(t) denotes the
number of ‘arrivals’ till time t.

As an example, renewal processes are counting processes. Note that for a counting
process {N(t)}t≥0, the following hold:

1. N(t) ≥ 0

2. N(t) is integer-valued

3. For s < t, N(s) ≤ N(t)

4. For s < t, N(t)−N(s) is the number of arrivals in the interval (s, t].

Definition 5.4: Stationary Increments

A stochastic process X(t) is said to have stationary increments if for any
s, t > 0, X(t+ s)−X(t) has the same distribution for all t.

Definition 5.5: Independent Increments

A stochastic process X(t) is said to have independent increments if for any
t0 < . . . < tn, X(t1)−X(t0), . . . , X(tn)−X(tn−1) are mutually independent.

Definition 5.6: Poisson Process

A Poisson process with rate λ is a counting process, N(t), t > 0 satisfying

1. N(0) = 0

2. {N(t)} has independent increments

3. {N(t)} has stationary increments

4. P (N(t) = n) =
e−λt (λt)n

n!
⇐⇒ N(t) ∼ Poi(λt)

We also have another alternate definition of Poisson processes, as follows

Definition 5.7: Poisson Process

A Poisson process with rate λ is a renewal process where inter-arrival times
are exponential with parameter λ
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Why are these two definitions equivalent?

Proof of Equivalence. First we prove that (1) =⇒ (2). Let {Xi}i≥1 be the inter-
arrival times. We have

P (X1 > t) = P (N(t) = 0) = e−λt

∴ X1 ∼ Exp(λ)

Next, we have

P (X2 > t | X1 = s) = P (N(t+ s)−N(s) = 0 | X1 = s)

= P (N(t+ s)−N(s) = 0)

= P (N(t) = 0)

= e−λt

Independent Increments

Stationary Increments

Thus, X2 is independent of X1 and X2 ∼ Exp(λ). Proceeding inductively, we can
show that {Xi}i≥1 are i.i.d Exp(λ).

Next, we show that (2) =⇒ (1). Discretise time into small δ-steps. At time
kδ (k ≥ 1), flip a coin with success probability λδ. The occurrences of heads can
be considered as arrivals. Independent and stationary increments follow naturally
from this view. Also, we have

P (N(t) = k) = P
(

Bin

(
t

δ
, λδ

)
= k

)
δ ↓ 0−−→ e−λt · (λt)k

k!

Next, we state (without proof) some properties of Poisson processes.

1. Merging: The merger of two independent Poisson processes with rates λ1, λ2
is another Poisson process with rate λ1 + λ2.

2. Splitting: Consider a Poisson process with rate λ. Each arrival is indepen-
dently tagged as type A with probability p and type B with probability
(1 − p). Then, type A arrivals occur according to a Poisson process with
rate λp and type B arrivals occur according to a Poisson process with rate
λ(1− p). Moreover, both processes are independent.

3. Uniformity: Let {N(t)} be a Poisson process with Sn denoting the time of

the nth arrival. Given that N(t) = n, the n arrival times (S1, . . . , Sn) have
the same join distribution as the order statistics corresponding to n i.i.d
random variables, uniform over [0, t].
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§6. Continuous Time Markov Chains

§§6.1. Introduction

Definition 6.1: Continuous Time Markov Chain (CTMC)

A CTMC over a countable state space S is a stochastic process {X(t)}t≥0 such
that ∀ s, t ≥ 0, j ∈ S,

P (X(t+ s) = j | X(u) = x(u) ; 0 ≤ u ≤ s) = P (X(t+ s) = j | X(s) = x(s))

We will again work only with time-homogeneous chains. That is

pij(t) := P (X(t+ s) = j | X(s) = i) (doesn’t depend on s)

Let τi denote the amount of time spent in state i. Since the chain obeys memo-
rylessness, we can conclude that τi ∼ Exp(νi). We will assume that νi ∈ (0,∞)
for all i ∈ S. This is called a pure jump process. The case νi = 0 signifies that
the process always stays in state i once it enters state i. The case νi =∞ signifies
that the process instantaneously transitions out of state i on entering state i.

We may view a CTMC in two different ways. In the first view, we enter some
state i. We stay in state i for a time τi ∼ Exp(νi). At the end of this time,
we transition to a different state j with a probability pij. There seems to be an
embedded DTMC in this view. If we sample the CTMC at transition instants, we
get a DTMC. This DTMC is called the Embedded Markov Chain (EMC). Notice
that the embedded chain cannot have any self-loops since we are sampling the
chain only at transition instants.

Now we look at the second view. On entering state i, we start separate timers for
every possible next state j with duration τij ∼ Exp(νi · pij). The timer which runs
out earliest denotes the next state of the chain. Note that these two views can
easily be shown to be equivalent using Lemma 5.2.

To graphically represent CTMCs, we use an approach similar to TPDs for DTMCs.
We first define qij := νi·pij. These are known as “rates” of the CTMC. We represent
CTMCs via a Transition Rate Diagram, which is a directed graph with weights
qij. Note that knowing {qij} is equivalent to knowing {νi} and {pij}. This is easily
proved by the following two identities.

qij = νi · pij

νi =
∑
j∈S

qij pij =
qij
νi
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For example, a Poisson process with rate λ is a CTMC, with the following rate
diagram

0 1 2 3 · · ·λ λ λ λ

As another example, consider an M/M/1 Queue. This consists of a single server
whose service requirements are i.i.d Exp(µ) and where jobs arrive according to
Poi(λ). Let X(t) denote the number of jobs in the system at time t, including the
job in service. It is easy to see that X(t) is a CTMC. The ‘timer’ for arrivals or
increments in X(t) has a rate parameter λ whereas the ‘timer’ for departures or
decrements in X(t) has a rate parameter µ. The transition rate diagram for the
M/M/1 Queue is as follows

0 1 2 3 · · ·
λ λ λ λ

µ µ µ µ

Also, the transition probability diagram for the embedded Markov chain is as
follows

0 1 2 3 · · ·
1

λ
λ+µ

λ
λ+µ

λ
λ+µ

µ
λ+µ

µ
λ+µ

µ
λ+µ

µ
λ+µ

Now, we look at stationarity for a CTMC. Recall that for DTMCs we found the
notion of stationarity being a balance of rates quite useful. We apply the same
concept here. Let π be a “stationary” distribution of the CTMC. Then, for any
state i, a simple rate balance equation gives us

πi ·
∑
j

qij︸ ︷︷ ︸
outgoing rates

=
∑
k

πk · qki︸ ︷︷ ︸
incoming rates

⇐⇒
∑
k

πk · qki − πi · νi = 0

Now, we define Q := [qij] where

qij =

{
νi · pij i 6= j

−νi i = j

This matrix Q is called the intensity matrix. The stationarity equations can be
rewritten as

π ·Q = 0
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This system of equations is analogous to π = π · P for a DTMC. Note however
that the solution to π ·Q = 0 is not in general the same as the solution to π = π ·P
where P is the TPM of the EMC. In fact, these two are equal precisely when each
state has the same rate. That is, νi = ν for all i.

Notice also that Q is a zero row-sum matrix. For the M/M/1 Queue, we have the
following intensity matrix

Q =


−λ λ 0 0 0 · · ·
µ −(λ+ µ) λ 0 0 · · ·
0 µ −(λ+ µ) λ 0 · · ·
0 0 µ −(λ+ µ) λ · · ·
...

...
...

...
...

. . .


This matrix has λ all along its superdiagonal, µ all along its subdiagonal and
−(λ+ µ) all along its diagonal (barring state 0).

§§6.2. Long Run Behaviour

We again work with irreducible chains. A CTMC is said to be irreducible if the
underlying EMC is irreducible. For irreducible DTMCs, we know that the exis-
tence of a stationary distribution is equivalent to meaningful long-run behaviour.
However, the same is not true for CTMCs. Consider the following rate diagram:

0 1 2 3 · · · i · · ·
6 6 · 2 6 · 22 6 · 23 6 · 2i−1 6 · 2i

4 · 2 4 · 22 4 · 23 4 · 24 4 · 2i 4 · 2i+1

Using methods similar to DTMCs, we can show that the stationary distribution,
satisfying π ·Q = 0 is given by

πi = (1− α) · αi

where α = 3
4
. However, it is also easy to see that the underlying EMC is transient.

Note that νi = 10 · 2i, which grows exponentially. This leads to an unbounded
number of transitions in a bounded interval of time, and hence no meaningful long
run behaviour. It turns out that to avoid such pathologies, it suffices to assume
the recurrence of the underlying EMC. We summarise the long-run behaviour of
CTMCs through the following theorem
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Theorem 6.2

Consider an irreducible CTMC with a recurrent EMC. Such a CTMC lies in
either of two categories.

1. There exists a distribution π, satisfying π · Q = 0. In this case, π is
unique and positive. Additionally, ∀ i, j ∈ S, we have

pij(t)
t ↑∞−−→ πj

1

t

∫ t

0

1{X(s)=i} ds
t ↑∞−−→
a.s

πi

In this case, π is called the stationary, limiting and time-averaged distri-
bution and the CTMC is said to be positive recurrent.

2. There does not exist any distribution satisfying π · Q = 0. In this case,
∀ i, j ∈ S, we have

pij(t)
t ↑∞−−→ 0

1

t

∫ t

0

1{X(s)=i} ds
t ↑∞−−→
a.s

0

In this case, there is no meaningful long-run behaviour and the CTMC
is said to be null recurrent.

Additionally, we would like to briefly examine the transient behaviour of a CTMC.
Namely, the evolution of pij(t) with time. We will assume positive recurrence. We
define the matrix P (t) := [pij(t)]. P (t) can be thought as analogous to P (n) in
the discrete-time case. Let µ(t) capture the law of the CTMC at time t. By the
Markov property, we have

µ(t) = µ(0) · P (t)

We claim that
dP (t)

dt
= Q · P (t)

The proof is left as an exercise and can be done quite easily using a δ-interpretation.
This then gives us a rather compact expression for P (t). We have

P (t) = eQt

where the right hand side is a matrix exponential.
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§§6.3. Time Reversibility

Theorem 6.3

Given an irreducible CTMC with recurrent EMC, if there exists a distribution
π over S such that

πi · qij = πj · qji ∀ i ∈ S

then π is the stationary distribution of the CTMC and the CTMC is positive
recurrent. We call such a CTMC a time-reversible CTMC.

Proof. We leave the proof as an exercise, since it follows along similar lines as
time-reversible DTMCs.

Note that the rate of i → j transitions in a CTMC is given by πi · qij. Similar
to the DTMC, the stationary equation of a CTMC can be thought of as a rate
balance equation. We now characterise the reverse process.

Lemma 6.4

Consider a positive recurrent CTMC. The reverse process of the CTMC is also
a CTMC with

q∗ij =
πj · qji
πi

Proof. Left as an exercise. Note that π∗ = π.

Lemma 6.5

For a time-reversible CTMC,
q∗ij = qij.

That is, the reverse process is statistically identical to the forward process and
has the same Q matrix. (This is why these CTMCs are called time-reversible)
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§7. Queueing Systems

§§7.1. Introduction

We will use the Kendall notation to specify queueing models. Queueing models
will be denoted as A/S/C, where A represents the interarrival time distribution, S
represents the service time or job size distribution and C represents the number of
servers. We will assume interarrival times and job sizes to be i.i.d. Occasionally, we
may use an additional parameter to denote the maximum capacity of the system,
as will be explained later. In these cases, queuing models will be denoted as
A/S/C/K where K is the maximum capacity.

The distributions A/S can be one of the following, for example:

1. M : Markovian/Memoryless

2. D : Deterministic

3. G : General

4. Ph : Phase-type

5. Ek: k-Erlang

We have the two categories of performance metrics - (i) System-level metrics and
(ii) Job-level metrics. Some commonly used system-level metrics are the number
of jobs in queue (NQ), the number of jobs in service (NS) and the total number of
jobs (N = NQ + NS). Some commonly used job-level metrics include the waiting
time or time spent in queue (TQ), the service time (TS) and the total time in system
(T = TQ + TS). The time in system, T , is sometimes also called the sojourn time
or response time.

§§7.2. The M/M/1 Queue

We now consider our first queue, the M/M/1 queue. We have Poisson arrivals
with rate λ. We have i.i.d job sizes, distributed exponentially with parameter µ.
We only have a single server. For now we assume FCFS (first-come-first-served)
scheduling. Let N(t) denote the number of jobs in the system at time t. It is clear
that N(t) is a CTMC over Z+. The rate diagram for this system is shown below.

0 1 2 3 · · ·
λ λ λ λ

µ µ µ µ
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For stability of the system, we require positive recurrence of the CTMC. Hence,
the system is stable if and only if λ < µ. We leave the calculation of the stationary
distribution as an exercise to the reader. Verify that the stationary distribution is
given by

πn = (1− ρ) · ρn for all n

where ρ = λ
µ

is called the utilisation of the system. Note that the long run fraction

of time that the server is busy is given by (1 − π0) = ρ, which is precisely why ρ
is called the utilisation.

Let N be the steady-state number of jobs in the system. The p.m.f of N is precisely
the stationary distribution π of the system. Now,

E[N ] =
∞∑
k=0

k(1− ρ)ρk =
ρ

1− ρ

This is the steady-state average number of jobs in the system. We see that as
ρ ↑ 1, E[N ] ↑ ∞. That is, as the system approaches the limit of stability, the
steady-state average number of jobs in the system grows without bound. We leave
it as an exercise to the user to calculate E[T ] for the M/M/1 queue (Hint: Wald’s
Lemma).

§§7.3. Little’s Law

We now state and prove a fundamental result in Queueing Theory, namely, Little’s
law. Informally, this states that for any system, the time-averaged number of
“jobs” in the system equals the product of the time-averaged arrival rate and the
time-averaged time spent in the system. This idea is formalised below.

Theorem 7.1: Little’s Law

Let N(t) denote the number of ‘items’ or ‘jobs’ in a system at time t. Let A(t)
denote the number of arrivals to the system up to time t and let D(t) denote
the number of departures from the system up to time t. Let Wi be the time
spent in the system by the ith arrival. Suppose, on a sample path, we have

lim
t→∞

A(t)

t
= lim

t→∞

D(t)

t
= λ

and suppose

W = lim
n→∞

1

n

n∑
i=1

Wi
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Then,

N := lim
t→∞

1

t

∫ t

0

N(s) ds = λ ·W

Proof. This is essentially a pictorial proof. Corresponding to the time spent in
the system by each arrival, draw a rectangle of height 1 over the timeline, ver-
tically stacked. Under this construction, N(t) will be the number of rectangles
encountered vertically at time t. Moreover, the integral∫ t

0

N(s) ds

is the area occupied by the rectangles to the left of t (including any ‘incomplete’
rectangles). With this, we have the following bound.

D(t)∑
i=1

Wi ≤
∫ t

0

N(s) ds ≤
A(t)∑
i=1

Wi

This follows since the LHS does not include the ‘incomplete’ rectangles whereas
the RHS includes the entire area occupied by the ‘incomplete’ rectangles. The
integral is then sandwiched between these two quantities. We then have

1

t

D(t)∑
i=1

Wi ≤
1

t

∫ t

0

N(s) ds ≤ 1

t

A(t)∑
i=1

Wi

∴
D(t)

t
· 1

D(t)

D(t)∑
i=1

Wi ≤
1

t

∫ t

0

N(s) ds ≤ A(t)

t
· 1

A(t)

A(t)∑
i=1

Wi

Taking limit t ↑ ∞ on either side, the first term becomes λ and the second term
becomes W . Hence,

lim
t→∞

1

t

∫ t

0

N(s) ds = λ ·W

Notice that this is purely a sample-path based result and does not need a probabil-
ity space. In ergodic systems, these time averages also match ensemble averages.
That is,

N = E[N ] almost surely and W = E[W ] almost surely.

We now apply Little’s Law to the M/M/1 system. We consider our system to be
the waiting area along with the server. Clearly, the arrival rate into the system is
λ. We calculated E[N ] previously. By Little’s Law, we get

E[T ] =
1

λ
E[N ] =⇒ E[T ] =

1

λ
· ρ

1− ρ
=

1

µ− λ
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Alternatively, consider that our system consists of only the server. Again, the
arrival rate into the system is λ while the average time spent in the system is
simply the expected service time, or 1

µ
. By Little’s Law, we have

E[N ] = λ · 1

µ
= ρ

However, E[N ] is simply the time-averaged number of jobs that are there in the
system or server. This is same as the long-run fraction of time the server is busy
or the time-averaged occupancy of the system. We had computed this number
earlier using the stationary distribution. However, Little’s Law allows us to obtain
the same result in a much simpler way.

Consider that we scale the service and arrival rates proportionately. That is,
instead of λ, µ we have kλ, kµ for some scaling factor k. In this case, ρ, which is
the ratio of the two, remains unchanged. Hence, the steady-state expected number
of jobs in the system remains unchanged. However, the expected time spent in
the system decreases by a factor of k. One may interpret this ‘scaling’ of arrival
and service rates as simply fast-forwarding the original system a factor of k. As
expected, this would have no bearing on the expected number of jobs in the system
but would modify the expected response time by a factor of exactly k.

§§7.4. Poisson Arrivals See Time Averages

We now state a crucial property of Poisson arrivals. Let pn denote the long-run
fraction of time there are n jobs in the system and let an be the long-run fraction of
arrivals that see n jobs in the system on arrival. We claim that if the arrivals occur
according to a Poisson process, then pn = an. This is formalised by the theorem
below called the Arrival Theorem or the PASTA property (Poisson Arrivals See
Time Averages).

Theorem 7.2: PASTA

Suppose {X(t)}t≥0 is a stochastic process taking values in S. Suppose that the
sample paths of X are right continuous with left limits. Suppose {N(t)}t≥0 is
a Poisson process. Lack of Anticipation Assumption (LAA): For any t ≥ 0,
arrivals post t are independent of the state of the system prior to t. That is,

N(t+ u)−N(t) ⊥⊥ {X(s) | 0 ≤ s ≤ t} for all u ≥ 0
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Let B ⊆ S be measurable. We define

1B(t) :=

{
1 if X(t) ∈ B
0 otherwise

and 1
(n)
B :=

{
1 if nth arrival sees X(t) ∈ B
0 otherwise

Assuming LAA, the following is true

lim
t→∞

1

t

∫ t

0

1B(s) ds = pB almost surely~w�
lim
n→∞

1

n

n∑
k=1

1
k
B = pB almost surely

Informally, PASTA says that the system average and the customer average match
with probability 1, so long as one of them exists. To see the power of this theorem,
consider the following question. For the M/M/1 queue, what is the long run
fraction of jobs that do not have to wait? This is the long run fraction of arrivals
that see the system to be in empty. By PASTA, this is precisely π0. Moreover,
PASTA is also crucial in simulations. To estimate the time-averaged distribution
of a system, we only need to view the system at the arrival instants.

§§7.5. Erlang Models

In 1917, A.K. Erlang published a single paper that contained three classic formu-
lae, namely Erlang models A,B, and C, corresponding to three queueing systems.
These formulae are in use even today in telephony and cellular services. In fact,
it is not an overstatement to say that Erlang’s work marks the birth of queueing
theory. We now study two of these three models.

7.5.1 The Erlang-B Model

The Erlang-B Model, in the Kendall notation, is the M/M/k/k queue. Jobs arrive
as per a Poisson process of rate λ. We have k servers, each having i.i.d Exp(µ)
service times. Since the capacity of the system is k as well, when a job arrives, it
begins service at a free server if one is available. Else, the job is dropped. Since
this model is frequently used to model telephony, we refer to jobs as ‘calls’. Hence,
when the system is operating at full capacity and a new call arrives, the call is
dropped, as has so often happened to all of us. Our objective is to characterise
the fraction of calls that are dropped.

The number of busy servers in the system evolves as a CTMC, as per the following
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rate diagram.

0 1 2 · · · · · · k − 1 k

λ λ λ λ λ

µ 2µ 3µ (k − 1)µ kµ

Using the time-reversibility equation, we obtain for the stationary distribution

πi · λ = πi+1 · (i+ 1)µ (0 ≤ i < k)

Thus,

πi = π0 ·
ai

i!

where a = λ
µ
. On normalising, we get

π0 =

(
k∑
i=0

ai

i!

)−1

By PASTA, the long run fraction of calls that are dropped is simply πk. We denote
this number as B(a, k), the blocking probability. The blocking probability is given
by the Erlang-B formula, as follows

B(a, k) =
ak/k!
k∑
i=0

ai

i!

Note that the M/M/k/k system is always stable and increasing a simply increases
B(a, k). It is convenient to represent B(a, k) in terms of a Poisson random variable,
as follows. Let X ∼ Poi(a). Then,

B(a, k) =
P(X = k)

P(X ≤ k)

Note that in practice, the assumption of Poisson arrivals is reasonable but assuming
an exponential call duration is not. However, what makes the Erlang-B formula
so powerful is that it holds for any generic call duration distribution with mean 1

µ
.
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7.5.2 The Erlang-C Model

The Erlang-C Model, in the Kendall notation, is the M/M/k queue. Jobs arrive
as per a Poisson process of rate λ. We have k servers, each having i.i.d Exp(µ)
service times. We have a single, infinite capacity queue. Jobs are scheduled as per
the FCFS policy. The number of jobs in the system evolves as a CTMC, with the
following rate diagram.

0 1 2 · · · · · · k − 1 k k + 1 · · ·
λ λ λ λ λ

µ 2µ 3µ (k − 1)µ kµ

λ λ

kµkµ

We define

a :=
λ

µ
and ρ :=

λ

kµ

By Little’s Law, ρ is the utilisation, the fraction of time each server is busy. For
stability of the system, we need

ρ < 1 ⇐⇒ a < k ⇐⇒ λ < kµ.

By time reversibility, we get

πi =

{
ai

i!
· π0 i < k
ai

k!ki−k
· π0 i ≥ k

On normalising, we have

π−10 =
k∑
i=0

ai

i!
+
∞∑
i=k

ai

k!ki−k
=

k∑
i=0

ai

i!
+
ak

k!

∞∑
i=k

(a
k

)i−k
Thus,

π0 =

(
k∑
i=0

ai

i!
+

ak

k!(1− ρ)

)−1

By PASTA, the long run fraction of jobs that have to wait is simply the fraction
of time the system spends in states greater than or equal to k. We denote this
number as C(a, k). We have

C(a, k) =
∑
i≥k

πi
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On simplifying, we get the Erlang-C Formula.

C(a, k) =

ak

k!(1− ρ)
k∑
i=0

ai

i!
+

ak

k!(1− ρ)

For a < k, we may rewrite the Erlang-C formula in terms of the Erlang-B formula,
as follows.

C(a, k) =
B(a, k)

1− ρ+ ρ · B(a, k)

Note that although B(a, k) is well-defined for a ≥ k, the above relation is valid
only for a < k. We leave the proof of the above expression as an exercise. The
reader may find it helpful to appeal to the Poisson-random-variable version of the
Erlang-B formula.

Let us now compute the steady-state metrics of the system. Conditioned onN ≥ k,
we have

P(NQ = i | N ≥ k) = P(N = k + i | N ≥ k)

=
P(N = k + i)

P(N ≥ k)

=

ak+i

k!ki

ak

k!(1− ρ)

= ρi(1− ρ)

This is exactly the same distribution as the M/M/1 queue, which should not be
surprising. We then have

E[NQ | N ≥ k] =
ρ

1− ρ
=⇒ E[NQ] = P(N ≥ k) · E[NQ | N ≥ k]

This gives us

E[NQ] = C(a, k) · ρ

1− ρ

Applying Little’s Law, we get

E[TQ] =
C(a, k)

kµ− λ
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Now,

E[T ] = E[TQ] + E[TS] =
C(a, k)

kµ− λ
+

1

µ

Again, applying Little’s Law, we get

E[N ] = E[NQ] + a

Thus, the expected number of jobs in service is a. In fact, this could have been
easily proved using Little’s Law on all of the k servers.

§§7.6. The M/G/1 Queue

We will now study the M/G/1 queue. Jobs arrive as per a Poisson process of
rate λ. Job sizes are i.i.d, independent of the arrival process, and have a generic
distribution. We define

ρ := λE[X].

For stability, we need ρ < 1. Note that ρ is the long term rate at which work comes
into the system. This can be seen formally using the Renewal-Reward Theorem,
considering renewals to be arrivals into the queue and the reward in epoch n to be
the size of the nth job. By Little’s Law, ρ is also the long run fraction of time the
server is busy.

We wish to compute E[TQ], the steady state expected wait time. Note that

TQ =

NA
Q∑

i=1

Xi + LA

where NA
Q is the number of jobs in the queue as seen by an arriving job, in steady

state, and LA is the residual service time of the job in service as seen by an arriving
job, in steady state. Since NA

Q is independent of Xi’s, we may apply Wald’s Lemma
to obtain

E[TQ] = E[NA
Q ] · E[X] + E[LA]

By PASTA, we have
E[TQ] = E[NQ] · E[X] + E[L]

By Little’s Law, we have

E[TQ] = λE[TQ] · E[X] + E[L] =⇒ E[TQ] =
E[L]

1− ρ

Hence, it remains to find E[L]. We leave the details of this computation as an
exercise to the reader. Consider renewal instants to be the instants when the
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system enters a “busy period” and considering L(t) to be the reward signal. On
using a sandwich-based argument, similar to the proof of Little’s Law, we conclude
that

E[L] =
λE[X2]

2

This gives us

E[TQ] =
λE[X2]

2(1− ρ)

which is commonly referred to as the Pollaczek-Khinchine Formula. Notice
that the mean wait time increases with job size variability. Next, we compute the
steady state expected busy period of the system. We define renewal instants at
instants when the server enters a busy period. If B denotes the length of a busy
period and I denotes the length of an idle period, then the length of a renewal
cycle is B + I. Let the reward signal be defined as

R(t) = 1{server is busy at time t}

Thus, the expected reward in a single renewal cycle is E[B]. By Little’s Law,

1

t

∫ t

0

R(s) ds
t ↑∞−−→ [a.s]ρ

By the Renewal-Reward Theorem,

ρ =
E[B]

E[B] + E[I]
=

E[B]

E[B] + 1
λ

This gives us

E[B] =
E[X]

1− ρ

§§7.7. Scheduling Policies

We take a short excursion from queueing models and talk about scheduling policies.
So far, we have considered only the FCFS scheduling policies. In practice, we have
a plethora of options to choose from. We classify scheduling policies as follows.

• 1. Non-preemptive: A non-preemptive policy does not allow a job to be
interrupted once it has begun service.

2. Preemptive: A preemptive policy allows service to be interrupted and
resumed later.
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• 1. Blind: A blind policy does not make use of job size information in
scheduling.

2. Size-based: A size-based policy uses job size information to schedule
jobs.

We will not dive into the details of scheduling policies, but we will state two
important results, before moving on. The reader is encouraged to study these
policies in detail.

Theorem 7.3

In the M/G/1 queue, all non-preemptive, blind policies have the same E[TQ] as
the FCFS scheduling policy. However, they do not have the same distribution
for TQ. Among non-preemptive, blind policies, the FCFS policy minimises
VarTQ for a given E[TQ].

It turns out that the ‘optimal’ policy is a preemptive, size-based policy known as
the SRPT policy (Shortest Remaining Processing Time). As the name suggests,
this policy provides service to that job which has the shortest remaining processing
time. For the SRPT policy, we have the following crucial result.

Theorem 7.4

On any arrival sequence,

E
[
T SRPT

]
≤ E

[
T P
]

under any scheduling policy P .

This theorem follows easily from the following Lemma, using Little’s Law

Lemma 7.5

On any arrival sequence, for any policy P ,

NSRPT (t) ≤ NP (t) ∀ t.

We omit the proof here. Note that no stochastic assumptions have been made.
The SRPT policy is optimal under the G/G/1 queue, as well as adversially chosen
arrival sequences.
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§§7.8. Burke’s Theorem and Queueing Networks

Finally, we study queueing networks. Throughout the remainder, we assume that
jobs are scheduled according to the FCFS policy, at each server. Perhaps the
simplest queueing network problem is that of tandem queues. Consider that we
have two infinite-capacity queues, 1 and 2. Jobs arrive into queue 1 according to
a Poisson process of rate λ. Queue 1 has a single server whose service times are
i.i.d Exp(µ1). Jobs that finish service in queue 1 move over to queue 2, which
again has a single server whose service times are i.i.d Exp(µ2). We wish to analyse
the steady state job distribution of this system. The obvious solution is to model
the system as a 2-dimensional CTMC where the state of the system is the 2-tuple
(n1, n2) corresponding to the number of jobs in each queue. The problem with this
solution is that it is tedious, and it does not generalise to larger networks. We now
explore a much simpler solution, based on characterising the departure process of
the first queue. This exploits the concept of time-reversibility. Notice that the
M/M/1 CTMC is indeed time-reversible. This gives us the following result.

Theorem 7.6: Burke’s Theorem

For an M/M/1 queue with arrival rate λ, the following are true in steady state.

1. The departure process is Poisson with rate λ.

2. At all t, N(t) is independent of past departures.

Proof.

1. Since the CTMC is time-reversible, the reverse process is statistically identi-
cal to the forward process. Hence, the arrival process of the reverse process
is Poi(λ). Since this is the same as the departure process of the forward
process, the firs part follows.

2. Departures prior to time t in the forward process are arrivals after time t in
the reverse process. However, N(t) is independent of future arrivals in the
reverse process.

Let us get back to our tandem system. By Burke’s Theorem, the departure process
of queue 1 is Poi(λ) and hence queue 2 is also an M/M/1 queue. Moreover, N2(t)
is completely determined by the departures of queue 1. Since N1(t) is independent
of these departures, the two queues are completely independent M/M/1 queues.
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Let N = (N1, N2) be the stationary job distribution in the system. We then have

P (N1 = n1, N2 = n2) = (1− ρ1)ρn1
1 · (1− ρ2)ρn2

2

where

ρ1 =
λ

µ1

and ρ2 =
λ

µ2

In fact, these nice results hold for any acyclic network. Consider for example, the
following network in shown in Figure 1

Figure 1: An example acyclic network

Each of the four queues is an independent M/M/1 queue. We define

ρ1 =
λ1
µ1

ρ2 =
λ2 + 1/3λ1

µ2

ρ3 =
λ3 + 2/3λ1

µ3

ρ4 =
λ1 + λ2 + λ3

µ4

Then, the state of the system, N = (N1, N2, N3, N4) has the following distribution.

P (Ni = ni, i = 1, . . . , 4) =
4∏
i=1

(1− ρi) · ρnii

69


	Introduction
	Discrete Time Markov Chains
	What is a DTMC?
	The Law of a DTMC
	The long-run behaviour of a DTMC

	Renewal Theory
	Introduction
	The Inspection Paradox: Motivation
	Renewal-Reward Theory

	Countable State-Space DTMCs
	Classification of States
	Transient Chains
	Recurrent Chains

	Exponential Distributions and Poisson Processes
	Continuous Time Markov Chains
	Introduction
	Long Run Behaviour
	Time Reversibility

	Queueing Systems
	Introduction
	The M/M/1 Queue
	Little's Law
	Poisson Arrivals See Time Averages
	Erlang Models
	The Erlang-B Model
	The Erlang-C Model

	The M/G/1 Queue
	Scheduling Policies
	Burke's Theorem and Queueing Networks


