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§1. Week 1

3rd August, 2021

Notation: We use C[x] to denote the set of all polynomials in x with complex coefficients.
R[x] is defined similarly.

1. Show that a real polynomial that is irreducible has degree at most two, i.e, if

f(x) = a0 + a1x+ · · ·+ anx
n, ai ∈ R,

then there are non-constant real polynomials g and h such that f(x) = g(x)h(x) if
n ≥ 3. (an 6= 0, of course)

Solution. We consider two cases. First, suppose f(x) ∈ R[x] has a real root, x0, and
let h(x) := (x− x0). Since x0 ∈ R, h(x) ∈ R[x]. Moreover, we can write

f(x) = g(x)h(x)

for some g(x) ∈ R[x]. (Why must g be a real polynomial?) Also, since deg f(x) ≥ 3
and deg h(x) = 1, we have that deg g(x) ≥ 2. Thus, g and h are two non-constant
real polynomials satisfying f(x) = g(x)h(x).

Now, suppose that f(x) has no real root. We may also view f(x) as a polynomial in
C[x]. By FTA, we know that f(x) has a complex root x0 ∈ C. By assumption, we
have that x0 /∈ R, and thus x0 6= x0.

Claim. f(x0) = 0.

Proof. We have
f(x0) = a0 + a1x0 + · · ·+ an(x0)

n

= a0 + a1x0 + · · ·+ anxn0
= a0 + a1 x0 + · · ·+ anxn0

= f(x0)

= 0

= 0.

zn = zn

ai ∈ R and thus, ai = ai

z1z2 + z3 = z1 z2 + z3

Thus, x0 and x0 are two distinct roots of f(x). Define g(x) := (x − x0)(x − x0). A
priori, we have g(x) ∈ C[x]. However, note that

(x− x0)(x− x0) = x2 − (2Rx0)x+ |x0|2 ∈ R[x].

Thus, g(x) is in fact a real polynomial. Since x0 and x0 are distinct, we see that g(x)
divides f(x) in C[x]. (Why?) Thus,

f(x) = g(x)h(x)
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for some h(x) ∈ C[x]. Again, since f(x) and g(x) are both real polynomials, so is
f = h(x). Moreover, since deg f(x) ≥ 3 and deg g(x) = 2, we have deg h(x) ≥ 1, and
we are done.

2. Show that a non-constant polynomial f(z1, z2) in complex variables z1 and z2 with
complex coefficients, has infinitely many roots in C2.

Solution. Before we prove this, we first prove the following useful Lemma.

Lemma. A complex polynomial of degree n has exactly n roots, counted with
multiplicity. In particular, all nonzero complex polynomials have finitely many
roots.

Proof. Let f(x) ∈ C[x] be a polynomial of degree n. We prove this via induction
on n. When n = 1, f(x) = a0 + a1x for some a0, a1 ∈ C with a1 6= 0. We have

f(x) = 0

⇐⇒ a0 + a1x = 0

⇐⇒ a1x = −a0
⇐⇒ x = −a0

a1
.

Thus, f(x) has exactly 1 root.

We now assume that an n-degree polynomial g(x) ∈ C[x] has exactly n roots
(counted with multiplicity). Let f(x) ∈ C[x] have degree n + 1. By FTA, f(x)
has a root x0 ∈ C. We may thus write

f(x) = (x− x0)g(x),

for some n-degree polynomial g(x) ∈ C[x]. Now, we have

f(x) = 0 ⇐⇒ x = x0 or g(x) = 0.

By assumption, the latter happens for exactly n values of x. Thus, f(x) has
exactly n+1 roots counted with multiplicity. The second statement follows from
the fact that any polynomial has finite degree.

Since f(z1, z2) is non-constant at least one of z1 or z2 must “appear” in f(z1, z2).
Without loss of generality, suppose that z2 appears in f(z1, z2). We may write

f(z1, z2) =

n∑
k=0

fk(z1) · zk2

where n ≥ 1 and fk(z1) ∈ C[z1]. Moreover, fn 6= 0, and thus, fn(z1) has only
finitely many roots (possibly zero). Thus, there are infinitely many α ∈ C such that
fn(α) 6= 0. Since, n ≥ 1, we have that f(α, z2) ∈ C[z2] is non-constant for all these
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infinitely many α. By FTA, for each such α, there exists β ∈ C such that f(α, β) = 0.
Thus, there are infinitely many roots of f(z1, z2) in C2 (since it contains all these
pairs (α, β) as α takes on infinitely many values).

3. Show that the complex plane minus a countable set is path-connected.

Solution. Let S ⊂ C be countable. We must show that C \ S is path-connected. Let
z1, z2 ∈ C \ S and z1 6= z2. Let f be the line segment joining z1 to z2, and let g be a
semicircular arc joining z1 to z2. For every λ ∈ [0, 1], we define

σλ(t) := λf(t) + (1− λ)g(t) ∀ t ∈ [0, 1]

Claim.

(a) σλ is a path in C,

(b) σλ(0) = z1 and σλ(1) = z2 for all λ ∈ [0, 1], and

(c) if λ1 6= λ2 and t ∈ (0, 1), then σλ1(t) 6= σλ2(t).

Proof. We leave the proof for (a) and (b) as simple exercises. To show (c), we
first note that for t ∈ (0, 1), f(t) 6= g(t). Now, let λ1, λ2 ∈ [0, 1] with λ1 6= λ2.
Suppose σλ1(t) = σλ2(t). We then have

λ1f(t) + (1− λ1)g(t) = λ2f(t) + (1− λ2)g(t)

=⇒ (λ1 − λ2)f(t) = (λ1 − λ2)g(t).

Since λ1 6= λ2, we get f(t) = g(t), a contradiction. Intuitively, this means that
the images of all these paths are disjoint, barring the start and end points.

Since [0, 1] is uncountable (we assume this without proof), and the images are disjoint
(by claim (c)), we have that the set {σλ | λ ∈ [0, 1]} is uncountable. Since the set S
is only countable, there exists some λ0 ∈ [0, 1] such that σλ0(t) /∈ S for all t ∈ [0, 1].
In other words, σλ0 is a path in C \ S starting at z1 and ending at z2. Since z1, z2
were arbitrary, we are done.

4. Check for real differentiability and holomorphicity:

(a) f(z) = c

(b) f(z) = z

(c) f(z) = zn, n ∈ Z

(d) f(z) = Rz

(e) f(z) = |z|

(f) f(z) = |z|2
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(g) f(z) = z

(h) f(z) =

{
z
z if z 6= 0

0 if z = 0

Solution. Some of these are trivial and hence omitted.

(a) Real differentiable and holomorphic.

(b) Real differentiable and holomorphic.

(c) For n ≥ 0, real differentiable and holomorphic. Since holomorphicity implies
real differentiability, we only check for holomorphicity. Let z0 ∈ C be arbitrary.
We must check for the existence of the following limit:

lim
z→z0

f(z)− f(z0)

z − z0
.

For z 6= z0, we know that

zn − zn0
z − z0

=

n−1∑
k=0

zkzn−1−k0 .

Since the limit of the RHS exists as z → z0, we are done.

For n < 0, the function is defined on C \ {0}. On C \ {0}, f(z) is non-zero.
Thus, 1

f is holomorphic on C\{0} by the first case since 1
f(z) = z−n and −n > 0.

Thus, f(z) is holomorphic on C \ {0}.

(d) Real differentiable but not holomorphic. We may write f as

f(x+ ιy) = x+ 0ι.

Thus, u(x, y) = x and v(x, y) = 0. f is clearly real differentiable since all the
partial derivatives (of u and v) exist everywhere and are continuous. However,
since ux(x0, y0) = 1 and vy(x0, y0) = 0 for all (x0, y0) ∈ R2, the CR equations do
not hold. Hence, f is complex differentiable nowhere, and thus, not holomorphic.

(e) |z| is real differentiable precisely on C \ {0} and complex differentiable nowhere.
We may write

f(x+ ιy) =
√
x2 + y2 + 0ι

giving us u(x, y) =
√
x2 + y2, and v(x, y) = 0. On R2 \ {(0, 0)}, all partial

derivatives exist and are continuous, whereas ux and uy fail to exist at (0, 0).
Thus, f(z) is real differentiable on C \ {0}. Moreover, this shows that f(z)
is not complex differentiable at 0 since it’s not even real differentiable there.
Everywhere else, vx = vy = 0, but at least one of ux, uy is non-zero, violating
the CR equations. Thus, f(z) is complex differentiable nowhere.
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(f) |z|2 is real differentiable everywhere and complex differentiable precisely at 0.
As a result, it is holomorphic nowhere. As before, we have u(x, y) = x2+y2, and
v(x, y) = 0. Since all partial derivatives exist everywhere and are continuous,
f(z) is real differentiable everywhere. Note that

ux(x, y) = 2x uy(x, y) = 2y

vx(x, y) = 0 vy(x, y) = 0

Thus, the CR equations hold precisely at 0.

(g) For f(z) = z, we may write

f(x+ ιy) = x− ιy,

which gives us u(x, y) = x and v(x, y) = −y. Since all partials exist everywhere
and are continuous, f(z) is real differentiable everywhere. However, note that

ux(x, y) = 1 uy(x, y) = 0

vx(x, y) = 0 vy(x, y) = −1

Since ux(x, y) 6= vy(x, y) for all (x, y) ∈ R2, we see that the CR equations do not
hold anywhere and f(z) is complex differentiable nowhere.

(h) f is real differentiable precisely on C \ {0}, and complex differentiable nowhere.
We may multiply and divide by z to obtain

u(x, y) =
x2 − y2

x2 + y2
and v(x, y) =

2xy

x2 + y2

for (x, y) 6= (0, 0), and u(0, 0) = v(0, 0) = 0. Since u and v are not continuous
at (0, 0) (recall MA109), neither is f . Hence, f is neither real differentiable, nor
complex differentiable at 0 ∈ C. At all other points, all partials exist and are
continuous. Hence, f is real differentiable there. However, one may explicitly
compute those partial derivatives and verify that the CR equations hold nowhere.
Thus, f is complex differentiable nowhere.
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§2. Week 2

10th August, 2021

1. If u(X,Y ) and v(X,Y ) are harmonic conjugates of each other, show that they are
constant functions. (This is true iff u and v are defined on open, path-connected sets)

Solution. Since v is a harmonic conjugate of u, we have

uX = vY and uY = −vX .

Since we also have that u is a harmonic conjugate of v, we get

vX = uY and vY = −uX .

Note that the above equalities hold for each point in the domain. Thus, we have

uX = uY = vX = vY ≡ 0,

identically. Since the domain is connected, this implies that u and v are constant.

The following is another alternative.

Lemma. Let u be a harmonic function defined on an open, path connected set.
Then, the harmonic conjugate of u is unique up to a constant.

Proof. Let v and v′ be two harmonic conjugates of u. It suffices to show that (v−
v′) is a constant function. By definition, u+ ιv and u+ ιv′ are both holomorphic,
and hence satisfy the Cauchy-Riemann equations. Thus, we have

ux = vy, vx = −uy and ux = v′y, v
′
x = −uy.

It thus follows that
(v − v′)x = (v − v′)y ≡ 0,

identically. Since the domain is path-connected, this implies that (v − v′) is
constant.

Now, since v(X,Y ) is a harmonic conjugate of u(X,Y ), we have that −u(X,Y ) is a
harmonic conjugate of v(X,Y ) (Why?). Since we also have that u(X,Y ) is a harmonic
conjugate of v(X,Y ), it follows that u and −u differ only by a constant, and hence u
must itself be constant. The same holds for v.

2. Show that u = XY − 3X2Y − Y 3 is harmonic and find its harmonic conjugate.

Solution. Consider the function

f(Z) =
1

2
Z2 + Z3,
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defined on C. Writing Z = X+ιY , where X,Y ∈ R, we see that the function u(X,Y )
is the imaginary part of f(Z). Since f(Z) is holomorphic on C, u is harmonic.
Moreover, its harmonic conjugate is give by

v(X,Y ) = −Rf(Z) =
1

2
(Y 2 −X2) + 3XY 2 −X3.

Note that we require a minus sign since we obtained that u(X,Y ) was the imaginary,
and not the real, part of a holomorphic function.

Note that the above method required us to intelligently guess the function f(Z).
However, if this is difficult to observe, we have the following ‘standard’ way of solving
this problem. Some simple calculations give us

uXX(X0, Y0) = 6Y0 and uY Y (X0, Y0) = −6Y0,

which gives us that uXX+uY Y ≡ 0, verifying that u is harmonic. Note that uX = vY ,
giving us vY = Y + 6XY . Integrating with respect to Y gives us

v =
1

2
Y 2 + 3XY 2 + g(X)

for some function g. We also have the relation vX = −uY . Computing each individ-
ually gives us

3Y 2 + g′(X) = −X − 3X2 + 3Y 2.

Thus, up to a constant, we get

g(X) = −1

2
X2 −X3.

Finally, we get

v =
1

2
Y 2 + 3XY 2 − 1

2
X2 −X3.

3. Find the radius of convergence of the following power series:

(a)
∞∑
n=0

nzn,

(b)
∑

p prime

zp,

(c)

∞∑
n=0

n!

nn
zn.
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Solution. We shall use the ratio test in the first and third parts, and the root test in
the second part.

(a) Note that we have

α = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣n+ 1

n

∣∣∣∣ = 1

and thus,
R = α−1 = 1.

(b) We may rewrite the series as
∞∑
n=1

anz
n,

where

an :=

{
0 n is not a prime,

1 n is a prime.

Since there are infinitely many primes, given any n ∈ N, there exists m ≥ n with
am = 1. Thus, we clearly have

lim sup
n→∞

n
√
|an| = 1.

Thus, the root test gives us
R = α−1 = 1.

(c) We have

an =
n!

nn
.

Thus,

α = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)!

n!
· nn

(n+ 1)n+1

= lim
n→∞

(
1 +

1

n

)−n
=

1

e
.

Since the above limit exists, we may apply the ratio test to get

R = α−1 = e.

4. Show that L > 1 in the ratio test (Lecture 3 slides) does not necessarily imply that
the series is divergent.
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Solution. Consider the sequence (an) defined by

a2n =
1

n2
and a2n−1 =

1

n3

Since
∑
n−2 and

∑
n−3 converge (via the integral test), we have that

∑
an converges.

However, note that

L = lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ ≥ lim sup
n→∞

∣∣∣∣ a2na2n−1

∣∣∣∣ = lim sup
n→∞

n =∞.

Thus L > 1 clearly, but the series is convergent. Hence, we have showed that even
L =∞ is not sufficient to conclude the divergence of a series.

5. Construct an infinitely differentiable function f : R → R which is non-zero but van-
ishes outside a bounded set. Show that there are no holomorphic functions which
satisfy this property.

Solution. We saw in the lectures that the function g : R→ R defined as

g(x) =

{
0 x ≤ 0,

e−1/x x > 0

is infinitely differentiable. Using this function, we construct f : R→ R as follows:

f(x) := g(x)g(1− x).

f is clearly infinitely differentiable. Moreover, f(x) = 0 if x ≤ 0 or x ≥ 1. Thus,
f vanishes outside the bounded set (0, 1). It remains to show that f is non-zero.
Indeed, we have that

f

(
1

2

)
=

(
g

(
1

2

))2

= e−4 6= 0.

Suppose f : C→ C be a holomorphic function which vanishes outside some bounded
set K. We now show that f is identically zero. For this, recall the Identity Theorem:

Theorem

Let Ω ⊂ C be a domain. If f : Ω→ C is analytic, then either f is identically zero,
or the zeros of f form a discrete set.

Although the above theorem is for analytic functions, we shall show later in the course
that holomorphic functions are indeed analytic. Since the set K is bounded, there
exists M > 0 such that

|z| ≤M for all z ∈ K.
Choosing the point z0 = M + 2, we see that f vanishes in a neighbourhood of radius
1 around z0. Since C is open and path-connected (and hence a domain), and since
any open disc is not discrete, we conclude from the above theorem that f must be
identically zero on C.
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6. Show that exp: C→ C× is onto.

Solution. Let z0 ∈ C×. It suffices to show that exp(z) = z0 for some z ∈ C. Since z0
is non-zero, r := |z0| 6= 0. Thus,

w :=
z0
r

has modulus 1. Thus,
w = x0 + ιy0

for some (x0, y0) ∈ R2 satisfying x20 + y20 = 1. Hence, x0 = cos θ and y0 = sin θ for
some θ ∈ [0, 2π). We now define

z := log(r) + ιθ,

where the above log is the real-valued log. Thus, we have

exp(z) = exp(log(r) + ιθ) = exp(log(r)) · exp(ιθ)

= r · (cos θ + ι sin θ)

= r · w = z0.

Thus, exp: C→ C× is onto.

7. Show that sin, cos : C→ C are surjective. (In particular, note the difference with real
sine and real cosine which were bounded by 1).

Solution. We prove that cos is surjective. A similar method works for sin. Recall
that

cos(z) =
1

2

(
eιz + e−ιz

)
.

Let z0 ∈ C. As before, it suffices to show that cos(z) = z0 for some z ∈ C. Consider
the quadratic equation

1

2

(
t+

1

t

)
= z0 (†)

Rearranging this gives us
t2 − 2z0t+ 1 = 0.

Since the above is a (non-constant) complex polynomial, it has a complex root t0 (by
FTA). Moreover, note that t0 6= 0. By the previous question, there exists z′ ∈ C
satisfying ez

′
= t0. Considering z = z′/ι, we see that eιz = t0. Plugging t0 = eιz in

(†) gives us
cos(z) = z0,

as desired.

8. Show that for any complex number z, cos2(z) + sin2(z) = 1.
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Solution. Consider the function f : C→ C defined as

f(z) = cos2(z) + sin2(z)− 1.

Note that f is holomorphic, and hence analytic. Since f vanishes on R and R is not
discrete, f must vanish everywhere, by the Identity Theorem.
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§3. Week 3

17th August, 2021

1. Show that the Cauchy-Riemann equations take the form

ur =
1

r
vθ and vr = −1

r
uθ

in polar coordinates.

Solution. We use the same method shown in the slides while deriving the (original)
Cauchy-Riemann equations. We first write

f(r, θ) = f(reιθ) = u(r, θ) + ιv(r, θ).

Suppose that f is differentiable at z0 = r0e
ιθ0 6= 0. Then, we know that the limit

lim
z→z0

f(z)− f(z0)

z − z0
exists. We shall calculate it in two ways:

(a) Fix θ = θ0 and let r → r0. Then, we get

f ′(z0) = lim
r→r0

{
u(r, θ0)− u(r0, θ0)

eιθ0(r − r0)
+ ι

v(r, θ0)− v(r0, θ0)

eιθ0(r − r0)

}

= e−ιθ0 lim
r→r0

{
u(r, θ0)− u(r0, θ0)

r − r0
+ ι

v(r, θ0)− v(r0, θ0)

r − r0

}

= e−ιθ0 (ur(r0, θ0) + ιvr(r0, θ0)) . (∗)

(b) Fix r = r0 and let θ → θ0. Then, we get

f ′(z0) = lim
θ→θ0

{
u(r0, θ)− u(r0, θ0)

r0(eιθ − eιθ0)
+ ι

v(r0, θ)− v(r0, θ0)

r0(eιθ − eιθ0)

}

=
1

r0
lim
θ→θ0

{
u(r0, θ)− u(r0, θ0)

eιθ − eιθ0
+ ι

v(r0, θ)− v(r0, θ0)

eιθ − eιθ0

}
(∗∗)

We concentrate on the first term of the limit. Note that

lim
θ→θ0

u(r0, θ)− u(r0, θ0)

eιθ − eιθ0

= lim
θ→θ0

u(r0, θ)− u(r0, θ0)

θ − θ0
θ − θ0
eιθ − eιθ0

.
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In the product, the first term is clearly uθ(r0, θ0), after taking the limit. The
second term can be calculated to be

1

ιeιθ0
.

(Write eιθ in terms of sin and cos, differentiate, and put it back.) A similar
argument holds for the v term as well. Thus, (∗∗) transforms to

f ′(z0) =
e−ιθ0

r0
(−ιuθ(r0, θ0) + vθ(r0, θ0)) .

Equating the above with (∗), cancelling e−ιθ0 , and comparing the real and imaginary
parts, we get

ur(r0, θ0) =
1

r0
vθ(r0, θ0) and vr(r0, θ0) = − 1

r0
uθ(r0, θ0),

as desired.

2. Prove Cauchy’s Theorem assuming Cauchy Integral Formula.

Solution. Let γ be a simple closed contour (oriented positively) and let Ω be an open
set containing γ as well as its interior. Let f be holomorphic everywhere on Ω. Let
z0 be interior to γ. Now, we define

g(z) := (z − z0) · f(z).

Since f is holomorphic on Ω, so is g. Moreover, g(z0) = 0. Applying the Cauchy
Integral Formula to g, we have

g(z0) = 0 =
1

2πι

∫
γ

g(z)

z − z0
dz =

1

2πι

∫
γ

(z − z0) · f(z)

z − z0
dz

Since z0 is interior to γ, z − z0 is non-zero on all of γ. Thus, we get∫
γ
f(z) dz = 0,

which is what Cauchy’s Theorem tells us.

3. Let γ be the boundary of the triangle {0 < y < 1− x; 0 ≤ x ≤ 1} taken with the
anticlockwise orientation. Evaluate

(a)
∫
γ R(z) dz,

(b)
∫
γ z

2 dz.
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γ1

γ2
γ3

(0, 0) (1, 0)

(0, 1)

Solution.

(a) Note that we may compute the integrals along γ1, γ2, and γ3 individually and
then add them. Along γ3, we have∫

γ3

R(z) dz =

∫
γ3

0 dz = 0.

Along γ1, we parameterise the curve as

γ1(t) = t+ 0ι, for t ∈ [0, 1].

Then, γ′1(t) = 1 + 0ι. Thus,∫
γ1

R(z) dz =

∫ 1

0
R(γ1(t))γ

′
1(t) dt

=

∫ 1

0
t dt

=
1

2
.

Along γ2, we parameterise the curve as

γ2(t) = 1− t+ ιt for t ∈ [0, 1].

Then, γ′2(t) = −1 + ι. Thus,∫
γ2

R(z) dz =

∫ 1

0
R(γ2(t))γ

′
2(t) dt

=

∫ 1

0
(1− t)(1− ι) dt

=
ι− 1

2
.

Thus, ∫
γ
R(z) dz =

∫
γ1

R(z) dz +

∫
γ2

R(z) dz +

∫
γ3

R(z) dz =
ι

2
.
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(b) Note that z2 admits a primitive on C and γ is a closed curve. Thus,∫
γ
z2 dz = 0 .

4. Compute

∫
|z−1|=1

2z − 1

z2 − 1
dz. (Assume that the integral is in the clockwise sense).

Solution. Note that the contour of integration does not enclose −1. Thus, we define
f : C \ {−1} → C as

f(z) =
2z − 1

z + 1
.

Note that f is holomorphic on C \ {−1}. Moreover, γ and its interior lie completely
within C \ {−1}. Thus, using the Cauchy integral formula, we have

2πιf(1) =

∫
|z−1|=1

f(z)

z − 1
dz =

∫
|z−1|=1

2z − 1

z2 − 1
dz,

which is precisely the integral we wish to calculate. Thus,∫
|z−1|=1

2z − 1

z2 − 1
dz = 2πιf(1) = πι .

5. Show that if γ is a simple closed curve traced counterclockwise, then the integral∫
γ
z dz equals 2ιArea(γ). Evaluate

∫
γ
zm dz over a circle γ centered at the origin.

Solution. Suppose γ(t) = x(t) + ιy(t) for t ∈ [a, b]. Then,∫
γ
z dz =

∫ b

a
γ(t)γ′(t) dt

=

∫ b

a
(x(t)− ιy(t))(x′(t) + ιy′(t)) dt

=

∫ b

a
(x(t)x′(t) + y(t)y′(t)) dt+ ι

∫ b

a
(x(t)y′(t)− y(t)x′(t)) dt

=

∫
γ
(xdx+ ydy) + ι

∫
γ
(xdy − ydx).

Now, we recall Green’s Theorem which said that∫
γ
(Mdx+Ndy) =

∫∫
Int(γ)

(
∂N

∂x
− ∂M

∂y

)
d(x, y)
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if γ is a (nice enough) closed curve oriented counterclockwise. Here, Int(γ) denotes
the “interior” of γ. Thus, we have∫

γ
z dz =

∫∫
Int(γ)

(0− 0) d(x, y) + ι

∫∫
Int(γ)

(1− (−1)) d(x, y)

= 2ι

∫∫
Int(γ)

1 d(x, y)

= 2ιArea(γ).

For the second part, we parameterise the circle as

γ(t) = reιt for t ∈ [0, 2π],

where r > 0 is arbitrary. We have

γ′(t) = ιreιt = ιγ(t).

Thus, ∫
γ
zm dz =

∫ 2π

0
(γ(t))

m · γ′(t) dt

=

∫ 2π

0
(γ(t))

m−1 · γ(t) · γ′(t) dt

= ι

∫ 2π

0
(γ(t))

m−1 · |γ(t)|2 dt

= ιr2
∫ 2π

0
rm−1e−ι(m−1)t dt

The above integral is 0 whenever m 6= 1. When m = 1, we have∫ 2π

0
1 dt = 2π.

Thus, ∫
γ
zm dz =

{
2πιr2 m = 1,

0 m 6= 1.

6. Let H = {z ∈ C | R(z) > 0} be the (strict) open right half plane. Construct a non-
constant function f which is holomorphic on H and satisfies f

(
1
n

)
= 0 for all n ∈ N.

Solution. We define
f(z) := sin

(π
z

)
.
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Since 0 /∈ H, we conclude that f is a composition of holomorphic functions, and hence
is holomorphic on H. Moreover, for any n ∈ N, we have

f

(
1

n

)
= sin(nπ) = 0.

Lastly, f is non-constant since

f(2) = sin
(π

2

)
= 1 6= 0.

7. Let f be a holomorphic function on C such that f
(
1
n

)
= 0 for all n ∈ N. Show that

f is constant.

Solution. Note that f is holomorphic and hence continuous. Thus, we have

f(0) = f

(
lim
n→∞

1

n

)
= lim

n→∞
f

(
1

n

)
= lim

n→∞
0

= 0.

Now, we see that f is zero on

S := {0} ∪
{

1

n
| n ∈ N

}
.

However, S is not discrete. To see this, note that 0 ∈ S, and given any δ > 0, there
exists n ∈ N such that 1/n < δ. Thus, for any δ > 0, Bδ(0)∩S contains a point other
than 0. Now, we use the Identity Theorem to conclude that f is identically zero, and
in particular, constant.

8. Expand
1 + z

1 + 2z2
into a power series around 0. Find the radius of convergence.

Solution. Let f(z) be the expression in the question. We may compute the power
by computing f (n)(0). However, if we are able to find a power series by some other
method, we may directly use that since power series expansion is unique. Note that

1

1 + 2z2
= 1− 2z2 + (2z2)2 − (2z2)3 + · · ·

for
∣∣2z2∣∣ < 1 for |z| < 1√

2
. Moreover, the above series diverges for |z| > 1√

2
. Thus,

the power series of f is given by

f(z) = (1 + z)
(
1− 2z2 + (2z2)2 − (2z2)3 + · · ·

)
= (1− 2z2 + (2z2)2 − (2z2)3 + · · · ) + z(1− 2z2 + (2z2)2 − (2z2)3 + · · · )
= 1 + z − 2z2 − 2z3 + 4z4 + 4z5 − 8z6 − 8z7 + · · ·

18



for |z| < 1√
2

. Moreover, multiplying with a non-zero finite power series does not

change the radius of convergence. Thus, the radius of convergence remains
1√
2

.

More concisely, we have

f(z) =

∞∑
n=0

anz
n,

where an = (−2)bn/2c.

Addendum.

Since a lot of alternate solutions were discussed, I am adding all of those here.

3a. Solution. Let γ(t) = x(t) + ιy(t) be a parameterisation of the entire curve, where
t ∈ [a, b]. We then have∫

γ
R(z) dz =

∫ b

a
x(t) · (x′(t) + ιy′(t)) dt

=

∫
γ
x dx+ ι

∫
γ
x dy

=

∫∫
Int(γ)

0 d(x, y) + ι

∫∫
Int(γ)

1 d(x, y)

= ιArea(γ) =
ι

2
.

In going from the single integral to the double integral, we have used Green’s Theorem.

3a. Solution. Note that

R(z) =
z + z

2
.

Let γ be the given curve. We then have∫
γ
R(z) dz =

1

2

∫
γ
z dz +

1

2

∫
γ
z dz.

Note that the first integral is 0 since z admits a primitive. Moreover, Q5 tells us that
the second integral must be 2ι times the area enclosed by the curve (the triangle, in
this case), which is just 1

2 . Thus, ∫
γ
R(z) dz =

ι

2
.
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5 We show another method for the second part. Let the circle γ have radius r > 0.
Notice that over the circle, we have

z =
r2

z
.

Thus, we have ∫
γ
zm dz =

∫
γ
r2mz−m dz

Moreover, for m 6= 1, z−m admits a primitive and hence the integral is zero. For
m = 1, one may use Cauchy Integral Formula, or simply recognise that the integral
reduces to the one already computed in the first part. In either case, we have∫

γ
zm dz =

{
2πιr2 m = 1,

0 m 6= 1.
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§4. Week 4

28th August, 2021

1. Show that there is a strict inequality∣∣∣∣∣
∫
|z|=R

zn

zm − 1
dz

∣∣∣∣∣ < 2πRn+1

Rm − 1
,

where R > 1, m ≥ 1, and n ≥ 0.

Solution. We first look at a stronger version of the ML inequality.

Theorem 1: The Stronger ML Inequality

Let f : Ω → C be a continuous function and let γ : [a, b] → Ω be a curve. Let
M > 0 be such that

|f(γ(t))| ≤M, for all t ∈ [a, b].

Also, suppose that |f(γ(t))| < M for some t ∈ [a, b]. Then,∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ < ML,

where L denotes the length of the curve. That is, if |f | < M holds even for one
point, the inequality becomes strict.

Proof. Note that ∫ b

a
[M − |f(γ(t))|]

∣∣γ′(t)∣∣dt ≥ 0,

since the integrand is non-negative. Moreover, recall from MA109 that the integral
is zero iff the integrand is identically zero. (We use continuity here.) Since we know
that the integrand is not identically zero (here we use the fact that γ′ is zero at only
finitely many points, if any), it follows that∫ b

a
[M − |f(γ(t))|]

∣∣γ′(t)∣∣dt > 0.

Since ∫ b

a
M
∣∣γ′(t)∣∣ dt = ML,

the theorem follows.

Now, we consider the function

f(z) =
zn

zm − 1
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defined on Ω := {z ∈ C | |z| > 1}. For a point satisfying |z| = R, we have∣∣∣∣ zn

zm − 1

∣∣∣∣ =
Rn

|zm − 1|

≤ Rn

||z|m − 1|

=
Rn

Rm − 1
.

Thus, we may take M =
Rn

Rm − 1
. Also, considering z = R exp

(
ιπ
m

)
shows that the

inequality is indeed strict at one point. Thus, we may appeal to The Stronger ML
Inequality to conclude that∣∣∣∣∣

∫
|z|=R

zn

zm − 1
dz

∣∣∣∣∣ ≤
∫
|z|=R

∣∣∣∣ zn

zm − 1

∣∣∣∣ dz
< M(2πR)

=
2πRn+1

Rm − 1
.

2. A power series with center at the origin and positive radius of convergence has a sum
f(z). It is known that f(z) = f(z) for all values z within the disc of convergence.
What conclusions can you draw about the power series?

Solution. Conclusion: All the coefficients of the power series are real. We now justify
this.

We show that f (k)(0) is real for all k ∈ N ∪ {0}. This suffices since we know that
the coefficients are given by f (k)(0)/k!. In what follows, we assume that x and x0 are
real, and within the (open) disc of convergence. For real x, we have

f(x) = f(x) = f(x).

That is, f(x) is real whenever x is real. We now wish to show that f (k)(x) is real for
real x for all k ≥ 1. It suffices to show this for f ′. (Induction!) Since we know that
f ′ exists within the disc, we may compute the limit along the real axis. Fix a real x0
within the disc. We note that

f ′(x0) = lim
x→x0
x∈R

f(x)− f(x0)

x− x0
.

Since the above expression is a quotient of two purely real expressions, we see that the
limit is real. Thus, we are done. Note that we knew beforehand that all the higher
derivatives of f do exist. Hence, we can apply the inductive process by computing
the limit along the real axis each time.
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3. The following is called the Taylor series with remainder.

f(z) = f(0) + zf ′(0) +
z2

2!
f ′′(0) + · · ·+ zN

N !
fN (0) +

zN+1

(N + 1)!

∫ 1

0
(1− t)NfN+1(tz) dt.

Use this to prove the following inequalities.

(a)

∣∣∣∣∣ez −
N∑
n=0

zn

n!

∣∣∣∣∣ ≤ |z|N+1

(N + 1)!
where R(z) ≤ 0.

(b)

∣∣∣∣∣cos(z)−
N∑
i=0

(−1)iz2i

2i!

∣∣∣∣∣ ≤ |z|2N+2 coshR

(2N + 2)!
where |I(z)| ≤ R.

Solution.

(a) Note that the sum subtracted is the first N + 1 terms of the Taylor expansion
of ez. Thus, the quantity within the modulus is simply

zN+1

(N + 1)!

∫ 1

0
(1− t)N exp(tz) dt.

We have used the fact that exp(N+1) = exp. Also, we have |exp(z)| = exp(R(z)).
Thus, we get ∣∣∣∣∫ 1

0
(1− t)N exp(tz) dt

∣∣∣∣ ≤ ∫ 1

0

∣∣(1− t)N exp(tz)
∣∣dt

=

∫ 1

0
(1− t)N exp(tR(z)) dt

≤
∫ 1

0
(1− t)N dt

=
1

N + 1
.

Thus, we have ∣∣∣∣∣ez −
N∑
n=0

zn

n!

∣∣∣∣∣ =

∣∣∣∣ zN+1

(N + 1)!

∫ 1

0
(1− t)N exp(tz) dt

∣∣∣∣
≤ |z|N+1

(N + 1)!

1

N + 1

≤ |z|N+1

(N + 1)!
.

(b) Note that the sum subtracted is the first 2N + 2 terms of the Taylor expansion
of cos(z). Thus, the quantity within the modulus is simply

z2N+2

(2N + 2)!

∫ 1

0
(1− t)2N+1 cos(2n+2)(tz) dt.
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Also, we have

|cos(z)| = 1

2

∣∣eιz + e−ιz
∣∣

≤ 1

2

(
|eιz|+

∣∣e−ιz∣∣)
=

1

2

(
ey + e−y

)
= cosh y.

Since cos(2N+2) = cos or − cos, we have in either case that∣∣∣cos(2N+2)(tz)
∣∣∣ ≤ |cosh ty|.

Note that cosh y is an increasing function of |y| (for real y.) Thus, we have

|cosh ty| ≤ |cosh y|

for all t ∈ [0, 1]. Moreover, since |y| ≤ R, we have

|cosh ty| ≤ |cosh y| ≤ coshR

for all t ∈ [0, 1]. Thus, we have∣∣∣∣∫ 1

0
(1− t)2N+1 cos(2n+2)(tz) dt

∣∣∣∣ ≤ ∫ 1

0
(1− t)2N+1

∣∣∣cos(2n+2)(tz)
∣∣∣dt

≤
∫ 1

0
(1− t)2N+1 coshR dt

=
coshR

2N + 2
.

As before, the desired inequality follows.

4. By computing

∫
|z|=1

(
z +

1

z

)2n 1

z
dz, show that

∫ 2π

0
cos2n θ dθ =

2π

4n
· (2n)!

(n!)2
.

Solution. We have the following “generalised” Cauchy integral formula, which states
that ∫

|w−z0|=r

f(w)

(w − z0)n+1
dw =

2πι

n!
f (n)(z0)

where f is a function that is holomorphic on an open disc BR(z0) and r < R. In this
question, we take z0 = 0, and r = 1. We take

f(z) = (z2 + 1)2n
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which is holomorphic on all of C. (We may thus take R = 2.) Using the above formula
gives us ∫

|z|=1

(
z +

1

z

)2n 1

z
dz =

∫
|z|=1

(z2 + 1)2n

z2n+1
dz

=
2πι

(2n)!
f (2n)(0).

We now wish to compute f (2n)(0). We know that f (2n)(0)/(2n)! is precisely the
coefficient of z2n in the expansion of (z2 + 1)2n. We use binomial expansion to see
that

(z2 + 1)2n =

2n∑
k=0

(
2n

n

)
z2k.

Thus, the coefficient of z2n is

(
2n

n

)
and the integral becomes

∫
|z|=1

(
z +

1

z

)2n 1

z
dz = 2πι

(
2n

n

)
.

Now, we use the standard parameterisation z(t) = eιt for t ∈ [0, 2π]. The integral
then becomes ∫

|z|=1

(
z +

1

z

)2n 1

z
dz =

∫ 2π

0
(2 cos t)2n

1

eιt
ιeιt dt

= 4nι

∫ 2π

0
cos2n t dt.

Equating the two gives us the desired result.

5. Let f(z) be an entire function. Show that f(z) is a polynomial of degree at most n
if and only if there exists a positive real constant C such that |f(z)| ≤ C|z|n for all
z with |z| sufficiently large.

Solution. Let f be an entire function satisfying |f(z)| ≤ C|z|n for some positive
constant C and all z with |z| > R0. We note that |f | is bounded on the set
{z ∈ C | |z| ≤ R0} since f is continuous and the latter set is compact. Let M be
a bound on |f | on this set. Pick R > 0. On BR(0), we then have

|f(z)| ≤ max {M,CRn} ≤M + CRn.

Now, for m > n, Cauchy’s estimate gives us∣∣∣f (m)(0)
∣∣∣ ≤ m! · (M + CRn)

Rm
.
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Since the above holds for arbitrary R > 0, we may let R→∞. Since m > n, we see
that f (m)(0) = 0 for all m > n. Now, since f is entire we may write

f(z) =
∞∑
k=0

f (k)(0)

k!
zk =

n∑
k=0

f (k)(0)

k!
zk,

for all z ∈ C. Hence, f is a polynomial of degree at most n.

Conversely, suppose f(z) = a0 + a1z + · · · + anz
n is a polynomial of degree at most

n. Note that
f(z)

zn
→ an as z →∞.

Thus, there must exist R > 0 such that for all z with |z| > R, we have∣∣∣∣f(z)

zn

∣∣∣∣ ≤ |an|+ 1.

Thus, C := |an|+ 1 works.

6. Let f and g be entire, non-vanishing functions with

(
f ′

f

)(
1

n

)
=

(
g′

g

)(
1

n

)
= 0

for all n ∈ N. Show that g is a non-zero scalar multiple of f .

Solution. We define
h :=

g

f
.

Since f is non-vanishing, h is defined on all of C. We also note that h is non-vanishing
since g is non-vanishing. Moreover, h is entire since f and g are entire. Now, we have

h′

h
=
g′f − gf ′

gf
=
g′

g
− f ′

f
.

Thus, we see that (
h′

h

)(
1

n

)
= 0 for all n ∈ N.

Since h is non-vanishing, we get

h′
(

1

n

)
= 0 for all n ∈ N.

Utilising the result from Question 7, Week 3, we conclude that h′ ≡ 0. Since C is
path-connected, h is a constant, say c. We thus have

g

f
= c =⇒ g = c · f.

Moreover, c 6= 0 since g is non-vanishing.
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§5. Week 5

31st August, 2021

1. Locate and classify the singularities of the following:

(a)
sin(1/z)

1 + z4
,

(b)
z5 sin(1/z)

1 + z4
,

(c)
1

sin(1/z)
,

(d) e
1
z .

Solution.

(a) Note that the numerator is not defined when z = 0 and the denominator is not
defined whenever z4 + 1 = 0. Thus, the set of singularities is

S =

{
0,

1√
2

(±1± ι)
}
.

Since there are only finitely many singularities, each of them is isolated. If
z0 ∈ S \ {0}, it is easy to see that

lim
z→z0

1

f(z)
= 0.

Thus, all non-zero singularities are poles. Now, we show that z = 0 is an essential
singularity. That is, it is neither removable nor a pole. It suffices to show that
lim
z→0

f(z) does not exist, neither as a finite complex number, nor as ∞.

Approaching 0 along the positive imaginary axis, we have

lim
y→0+

f(z) = lim
y→0+

sin(1/ιy)

1 + (ιy)4

=
1

2
lim
y→0+

(e1/y − e−1/y).

Note that the above limit exists as ∞, so 0 is not a removable singularity. Ap-
proaching along the real axis, we have that sin is bounded and the denominator
tends to 1, so 0 is not a pole either.

(b) This follows the same approach as the first one. All the singularities (and their
types) remain the same.
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(c) Here, we have a problem if z = 0 or sin(1/z) = 0. Thus, the set of singularities
is given by

S = {0} ∪
{

1

nπ
| n ∈ Z \ {0}

}
.

Note that 0 is not an isolated singularity since every neighbourhood of 0 contains
some point of the form 1/(nπ). We thus do not classify 0. All other singularities,
however, are isolated. To see this, let z0 ∈ S \ {0}. Then,

z0 =
1

nπ

for some n ∈ Z \ {0}. Now, choose

δ := min

{∣∣∣∣ 1

nπ
− 1

(n+ 1)π

∣∣∣∣, ∣∣∣∣ 1

nπ
− 1

(n− 1)π

∣∣∣∣} .
(If n = ±1, then just choose the other value). For the above choice of δ, the
punctured neighbourhood Bδ(z0) \ {z0} contains no other point of S.

Now, we show that all of these isolated singularities are poles. To see this, we
note that

lim
z→z0

z − z0
sin(1/z)

exists (as a finite number) and is nonzero for any z0 ∈ S \ {0}. Thus, all these
points are poles.

(d) The only problematic point here is 0. We show that 0 is an essential singularity.
Note that as z → 0 along the negative real axis, we have that e1/z → 0. However,
as z → 0 along the positive real axis, we have e1/z → ∞. Thus, lim

z→0
e1/z does

not exist, neither as a finite complex number, nor as ∞.

2. Construct a meromorphic function on C with infinitely many poles.

Solution. We define f : C \ {nπ | n ∈ Z} → C as

f(z) :=
1

sin z
.

It is easy to note that f has infinitely many singularities, which are given precisely
by the set S := {nπ | n ∈ Z}, and all these are isolated. Moreover, for each z0 ∈ S,
we have

lim
z→z0

1

f(z)
= lim

z→z0
sin z = 0.

Thus, all the singularities are also poles. Hence, f is meromorphic on C with infinitely
many poles.
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3. Find Laurent expansions for the function f(z) =
2(z − 1)

z2 − 2z − 3
valid on the annuli

(a) 0 ≤ |z| < 1,

(b) 1 < |z| < 3,

(c) 3 < |z|.

Solution. Note that
2(z − 1)

z2 − 2z − 3
=

1

z − 3
+

1

z + 1
.

In each part, we expand each fraction as a Laurent series such that the series converges
on that particular disc.

(a) Here, we may write

1

z − 3
= −1

3

1

1− z
3

= −1

3

∞∑
n=0

(z
3

)n
,

and
1

z + 1
=
∞∑
n=0

(−z)n.

Thus, the Laurent series in the annulus |z| < 1 is given as the sum of the above
two.

(b) Here, we may write

1

z − 3
= −1

3

1

1− z
3

= −1

3

∞∑
n=0

(z
3

)n
,

and
1

z + 1
=

1

z
(
1 + 1

z

) =
∞∑
n=0

(−z)−n−1.

Thus, the Laurent series in the annulus 1 < |z| < 3 is given as the sum of the
above two.

(c) Here, we may write

1

z − 3
=

1

z

1

1− 3
z

=
1

z

∞∑
n=0

(z
3

)−n
,

and
1

z + 1
=

1

z
(
1 + 1

z

) =

∞∑
n=0

(−z)−n−1.

Thus, the Laurent series in the annulus 1 < |z| < 3 is given as the sum of the
above two.
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4. Let Ω be a domain in C and let z0 ∈ Ω. Suppose that z0 is an isolated singularity of
f(z) and f(z) is bounded in some punctured neighbourhood of z0. Show that f(z)
has a removable singularity at z0.

Solution. Fix δ > 0 such that f is bounded and holomorphic on the punctured disc
of radius δ centered at z0. (such a δ exists since z0 is an isolated singularity.) Define
g(z) := f(z)(z−z0) on this punctured disc. Then, g is holomorphic on this punctured
disc. Moreover, we have

lim
z→z0

g(z) = 0

since f is bounded on the punctured disc. Thus, by RRST, we see that z0 is a
removable singularity of g. Furthermore, defining g(z0) := 0 makes it holomorphic on
Bδ(z0). (This again follows from RRST.) Thus we may expand g on Bδ(z0) as

g(z) = a1(z − z0) + a2(z − z0)2 + · · · .

Thus, for z ∈ Bδ(z0) \ {z0}, we have that

f(z) = a1 + a2(z − z0) + · · · .

Thus, z0 is a removable singularity of f since defining f(z0) := a1 makes it holomor-
phic on Bδ(z0).

5. A complex-valued function f(z) on C is called doubly periodic if there exist linearly
independent vectors v, w ∈ C over R such that f(z + v) = f(z) and f(z + w) = f(z)
for all z ∈ C. Show that any doubly periodic entire function is constant.

Solution. Suppose f is doubly periodic and entire. It is easy to see that for all z ∈ C,
we have

f(z + nv) = f(z) = f(z +mw) for all m,n ∈ Z.

Since v and w are linearly independent over R, we have that every z ∈ C can be
uniquely written as z = xv + yw where x, y ∈ R. Let {x} denote the fractional part
of x and let [x] denote its integer part. We then have

f(z) = f(xv + yw)

= f([x]v + {x}v + [y]w + {y}w)

= f({x}v + {y}w).

Now, let S := {xv + yw | x, y ∈ [0, 1]} denote the parallelogram with vertices 0, v, w,
and v+w. We note that {x}v+ {y}w ∈ S for all x, y ∈ R. Hence, the set of values f
takes is decided entirely by the set of values it takes on S. Since S is compact and f
is continuous, f must be bounded on S, and thus bounded on all of C. By Liouville’s
Theorem, we conclude that f is constant.
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6. By transforming into an integral over the unit circle, show that∫ 2π

0

1

a2 + 1− 2a cos θ
dθ = − 2π

1− a2
,

where a > 1. Also compute the value for a < 1.

Solution. Assuming 0 < a 6= 1, we have∫ 2π

0

1

a2 − 2a cos θ + 1
dθ =

∫ 2π

0

1

a2 − a(e−ιθ + eιθ) + e−ιθ · eιθ
dθ

=

∫ 2π

0

1

(a− eιθ)(a− e−ιθ)
dθ

=

∫ 2π

0

eιθ

(a− eιθ)(aeιθ − 1)
dθ

=
1

ι

∫ 2π

0

ιeιθ

(a− eιθ)(aeιθ − 1)
dθ

=
1

ι

∫
|z|=1

1

(a− z)(az − 1)
dz

= − 1

aι

∫
|z|=1

1

(z − a)(z − 1/a)
dz.

Note that for both cases a > 1 and a < 1, the integrand has exactly one pole within
the unit circle. For a > 1, the pole is at 1/a. Using Cauchy’s Integral Formula, we
get ∫ 2π

0

1

a2 − 2a cos θ + 1
dθ = − 1

aι
· 2πι 1

1/a− a

= − 2π

1− a2
.

For a < 1, the pole is at a, which gives us∫ 2π

0

1

a2 − 2a cos θ + 1
dθ = − 1

aι
· 2πι 1

a− 1/a

= − 2π

a2 − 1

7. Show that if a1, . . . , an are the distinct roots of a monic polynomial P (z) of degree n,
then for each 1 ≤ k ≤ n, we have the formula∏

j 6=k
(ak − aj) = P ′(ak).
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Solution. Since P (z) is monic and we know all its factors, we may write

P (z) = (z − a1) · · · (z − an).

Fix k ∈ {1, . . . , n}. Note also that P (ak) = 0. Thus, we may write

P (z)− P (ak) = (z − a1) · · · (z − an).

If z 6= ak, we may divide by z − ak to get

P (z)− P (ak)

z − ak
=
∏
j 6=k

(z − aj).

Letting z → ak gives us the answer.

Solution. Alternatively, we may write

P (z) = (z − ak)Pk(z)

where
Pk(z) :=

∏
j 6=k

(z − aj).

Differentiating both sides using the product rule, we get

P ′(z) = (z − ak)P ′k(z) + Pk(z).

Substituting z = ak gives us the desired result.
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§6. Week 6

7th September, 2021

1. Evaluate

∫ 2π

0

cos2(3x)

5− 4 cos(2x)
dx.

Solution. We solve this by converting the integral to an integral over the unit circle.
Note that 2 cos(nθ) = zn + z−n for z = eιθ. We use this to manipulate the integral
as follows.

∫ 2π

0

cos2(3θ)

5− 4 cos(2θ)
dθ =

1

4

∫ 2π

0

(2 cos(3θ))2

5− 2(2 cos(2θ))
dθ

=
1

4

∫ 2π

0

(e3ιθ + e−3ιθ)2

5− 2(e2ιθ + e−2ιθ)
dθ

=
1

4

∫ 2π

0

(e3ιθ + e−3ιθ)2

5− 2(e2ιθ + e−2ιθ)

ιeιθ

ιeιθ
dθ

=
1

4

∫
|z|=1

(z3 + z−3)2

5− 2(z2 + z−2)

1

ιz
dz

= − 1

8ι

∫
|z|=1

(z6 + 1)2

z5(z4 − 5z2/2 + 1)
dz

Note that z4 − 5z2/2 + 1 can be solved easily since it’s a quadratic in z2. We get the

solutions to be ±
√

2,± 1√
2

. Thus, all the poles are given by

0,± 1√
2
,±
√

2.

Since ±
√

2 lie outside the unit circle, we won’t be concerned about them. Let us now
calculate the residue at the remaining poles.

Residue at 0. This is a pole of order 5. To compute the residue, we would have to
compute the fourth derivative. Of course, we will not do this! Rather, let’s find the
Laurent series directly. We have

(z6 + 1)2

z5(z4 − 5z2/2 + 1)
=

1

z5
(z6 + 1)2

1− (5z2/2− z4)

=
1

z5

{(
z12 + 2z6 + 1

)
·

[
1 +

(
5

2
z2 − z4

)
+

(
5

2
z2 − z4

)2

+ · · ·

]}
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The desired residue is then just the coefficient of 1
z in the above series, which is the

coefficient of z4 in {· · · }. This is easily seen to be

−1 +
25

4
=

21

4
.

Residue at 1/
√

2. Note that 1/
√

2 is a simple pole. Thus, the residue calculation
will also be simple. (This is probably why these are called simple poles.) We factorise
the integrand as

(z6 + 1)2

z5(z2 − 2)

(
z − 1√

2

)(
z +

1√
2

) .
Thus, the residue is just given by((

1√
2

)6

+ 1

)2

(
1√
2

)5
((

1√
2

)2

− 2

)(
1√
2

+
1√
2

) =

(
1

8
+ 1

)2

1

4
√

2
·
(

1

2
− 2

)
·
√

2

= −27

8
.

Residue at −1/
√

2. This also turns out to be −27

8
.

Thus, the integral turns out to be

− 1

8ι
· 2πι

(
21

4
− 27

8
− 27

8

)
= − 1

8ι
· 2πι

(
21

4
− 27

4

)
= − 1

8ι
· 2πι

(
−6

4

)
=

3π

8
.

2. Evaluate

∫
|z−2|=4

2z3 + z2 + 4

z4 + 4z2
dz.

Solution. Define

f(z) :=
2z3 + z2 + 4

z4 + 4z2
.
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The singularities of f are 0,±2ι. Since these are only finitely many, they are all
isolated. Moreover, it is to easy to verify that these are all poles and all of these lie
within the given circle. Thus, the integral is just

2πι
∑

z ∈{0,±2ι}

Res(f ; z)

Thus, it remains to compute the residues. For that, we first factor f as

f(z) =
2z3 + z2 + 4

z2(z + 2ι)(z − 2ι)
.

Residue at 0. Clearly, 0 is a pole of order 2. Thus the residue at 0 is given by
1

1!
g′(0)

where g(z) := z2f(z). We thus have

g(z) =
2z3 + z2 + 4

z2 + 4
.

Using the quotient rule, we have

g′(z) =
(6z2 + 2z)(z2 + 4)− 2z(2z3 + z2 + 4)

(z2 + 4)2
.

Although that’s a nasty expression, remember that we only need to evaluate it at 0.
We thus get

g′(0) =
0 · 4− 4 · 0

42
= 0.

Thus, Res(f ; 0) = 0.

Residue at 2ι. Again, 2ι is a simple pole so we have nothing to worry about. The
residue is simply given by simply given by lim

z→2ι
(z − 2ι)f(z), which turns out to be

lim
z→2ι

(z − 2ι)f(z) = lim
z→2ι

2z3 + z2 + 4

z2(z + 2ι)

=
2(2ι)3 + 0

(2ι)2(2ι+ 2ι)

= 1.

Thus, Res(f ; 2ι) = 1.

Residue at −2ι. This also turns out to be 1.

Thus, the integral is given by

2πι
∑

z ∈{0,±2ι}

Res(f ; z) = 2πι(0 + 1 + 1) = 4πι.
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3. Show with and without the open mapping theorem that if f is a holomorphic function
on a domain Ω with |f | constant, then f is constant.

Solution.
Without OMT. Writing f = u+ ιv as usual, we see that

u2 + v2 ≡ c.

If c = 0, we are done. Assume c 6= 0. Differentiating the above with respect to x
gives us

uux + vvx = 0. (∗)

Similarly, differentiating with respect to y gives us

uuy + vvy = 0.

Using CR equations, we may rewrite the above equation as

−uvx + vux = 0. (∗∗)

Putting together (∗) and (∗∗) gives us[
u v
v −u

] [
ux
vx

]
=

[
0
0

]
.

Note that det

[
u v
v −u

]
= −c 6= 0 and thus, ux = vx ≡ 0 on Ω. Thus, we get f ′ ≡ 0

on Ω. Since Ω is path-connected, f is constant.

With OMT. Suppose f is not constant. Then, OMT tells us that the image f(Ω)
must be open in C. However, |f | being constant tells us that f(Ω) must be a (non-
empty) subset of the circle {z | |z| = c}, where c is the constant that |f | equals.
However, no non-empty subset of such a circle is open. Thus, we arrive at a contra-
diction which shows that f must be constant.

4. Show that

∫ ∞
−∞

x

(x2 + 2x+ 2)(x2 + 4)
dx = − π

10
.

Solution. We define
f(z) :=

z

(z2 + 2z + 2)(z2 + 4)
.

This has poles at −1 ± ι,±2ι. Thus, if we R > 2, then all the poles in the upper
half plane are enclosed within the following contour.
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γ1

γ2

γ1

γ2

R−R

Applying residue theorem to the above contour, we get∫
γ1

f(z) dz +

∫
γ2

f(z) dz = 2πι
∑

z ∈{2ι,−1+ι}

Res(f ; z).

In the limit that R → ∞, the integral along γ1 is exactly what we want. A simple
application of the ML inequality tells us that the integral along γ2 vanishes in the
limit R→∞. Thus, the desired integral is just

2πι
∑

z ∈{2ι,−1+ι}

Res(f ; z).

Both these poles are simple, so the residue calculation is rather straightforward. We
have

Res(f ; 2ι) = − 1

20
− ι

10
and Res(f ;−1 + ι) =

1

20
+

3ι

20
.

Thus, ∫ ∞
−∞

x

(x2 + 2x+ 2)(x2 + 4)
dx = 2πι

∑
z ∈{2ι,−1+ι}

Res(f ; z)

= 2πι ·
(
− 1

20
− ι

10
+

1

20
+

3ι

20

)
= 2πι · ι

20

= − π

10
.
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5. Compute the number of zeros of the polynomial z5 + z2 − 6z + 3 inside the annulus
1/3 < |z| < 1 using Rouché’s Theorem.

Solution. We first recall Rouché’s Theorem. Let γ be a closed contour in C. If f and
g are holomorphic on an open set containing γ and its interior and if |g| < |f | on γ,
then f and f + g have the same number of zeros in Int(γ) where each zero is counted
with multiplicity.

Let f(z) := z5 + z2− 6z+ 3. First, we consider the contour |z| = 1

3
. On this contour,

note that ∣∣z5 + z2 − 6z
∣∣ ≤ |z|5 + |z|2 + 6|z|

=

(
1

3

)5

+

(
1

3

)2

+ 6 · 1

3

=
514

243
< 3.

Thus, inside the disc |z| < 1/3, the polynomial f(z) has the same number of zeros as
the polynomial 3. Thus, f(z) has no zeros within the contour |z| < 1/3. Now, on the
contour |z| = 1, we see that∣∣z5 + z2 + 3

∣∣ ≤ |z|5 + |z|2 + 3

= 5 < 6 = |−6z|.

Thus, inside the disc |z| < 1, the polynomial f(z) has the same number of zeros as
−6z, which has exactly one zero. Putting together these two results, we get that f(z)
has exactly one zero inside the annulus 1/3 < |z| < 1.

6. Show that the function u(x, y) = log
(
x2 + y2

)
is harmonic on the annulus 1 < |z| < 2.

Does u(x, y) have a harmonic conjugate?

Solution. Let D be the annulus 1 < |z| < 2. To show that u(x, y) is harmonic on D,
we compute partials at any arbitrary point (x, y) ∈ D. We have

ux(x, y) =
2x

x2 + y2
and uy(x, y) =

2y

x2 + y2
.

This gives us

uxx(x, y) =
−2x2 + 2y2

(x2 + y2)2
and uyy(x, y) =

2x2 − 2y2

(x2 + y2)2
.

Clearly, uxx + uyy ≡ 0 on D, and thus u is harmonic on D. However, u has no
harmonic conjugate on D as we now show.

Suppose for the sake of contradiction that v(x, y) is a harmonic conjugate of u(x, y)
on D, so that f = u + ιv is holomorphic on D. By the Cauchy-Riemann equations,
we must have

∇v(x, y) =

(
− 2y

x2 + y2
,

2x

x2 + y2

)
.
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However, we know from MA111 that the above is not possible! For instance, the line
integral of ∇v along a circle C of radius R (where 1 < R < 2) must turn out to be
zero. We show that this is not the case. Consider a parameterisation γ : [0, 2π]→ D
defined by

γ(θ) = (R cos θ,R sin θ).

We then have∮
C
∇v · dγ =

∫ 2π

0

(
−2R sin θ

R2
,
2R cos θ

R2

)
· (−R sin θ,R cos θ) dθ

=

∫ 2π

0
(2 sin2 θ + 2 cos2 θ) dθ

= 4π 6= 0.

7. Show that if f(z) is a non-zero polynomial, then g(z) = ezf(z) has an essential
singularity at ∞.

Solution. First, let’s approach ∞ along the positive real axis. Here, we have

lim
z→+∞

|g(z)| = lim
z→+∞

|ez||f(z)| =∞,

since both |ez| and |f(z)| go to ∞ as z → +∞. However, approaching ∞ along the
negative real axis, we have

lim
z→−∞

|g(z)| = lim
z→−∞

|ezf(z)| = 0.

Thus, lim
|z|→∞

|g(z)| exists neither as a finite complex number nor as ∞. Thus, g has

an essential singularity at ∞.
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