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§1. Week 1

25th November, 2020

Sheet 1.

2 (iv) lim
n→∞

(n)1/n.

Solution. We will utilise the fact that n1/n ≥ 1 for all n ∈ N. (Why is this
true?) We define hn := n1/n − 1. Then, hn ≥ 0 for all n ∈ N. For n ≥ 2, we
have

n = (1 + hn)n ≥ 1 +

(
n

1

)
hn +

(
n

2

)
h2n >

(
n

2

)
h2n =

n(n− 1)

2
h2n

Cancelling out the n’s, we get

h2n <
2

n− 1
=⇒ hn <

√
2

n− 1

Thus for n ≥ 2, we have

0 ≤ hn <

√
2

n− 1

Notice that the limit of the sequence on the right exists and is equal to 0. Thus,
utilising Sandwich Theorem, we get that lim

n→∞
hn = 0. Recalling how we defined

hn, we get lim
n→∞

n1/n = 1.
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3 (ii) Prove that the sequence an :=

{
(−1)n

(
1

2
− 1

n

)}
n≥1

is not convergent.

Solution. We will prove this result by contradiction. First, observe that the

sequence bn :=
(−1)n

n
is convergent and its limit is 0. This is true because

its absolute value behaves the same way as
1

n
(try proving this with the ε-N

definition to work out the details). We also know that the sequence {(−1)n}n≥1
is not convergent. (Why?) Now, let us assume that the given sequence (an)
converges. We have

an :=

{
(−1)n

(
1

2
− 1

n

)}
=

(−1)n

2
− (−1)n

n

We also know that the the sum of two convergent sequences is convergent.
Since an is assumed to be convergent and bn is convergent, we have that cn :=

an + bn =
(−1)n

2
must also converge. However, the convergence of cn implies

that the sequence (−1)n also converges. Hence, we arrive at a contradiction
and thus, the sequence (an) is not convergent.
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5 (iii) Prove that the following sequence is convergent by showing that it is monotone
and bounded. Also find its limit.

a1 = 2, an+1 = 3 +
an
2
∀n ∈ N

Solution. We first claim that an < 6 for all n ∈ N. To prove this, we will use
mathematical induction. The base case, n = 1 is immediate as 2 < 6. Assume
that the claim holds for some n = k. Now,

ak+1 = 3 +
ak
2
< 3 +

6

2
= 6

By induction, the claim follows. Hence, an is bounded above.

Next, we claim that an+1 > an for all n ∈ N. We have

an+1 − an = 3− an
2

=
6− an

2

We just showed that an < 6 for all n ∈ N. It thus follows that an+1 > an for
all n ∈ N. Hence, (an) is a monotonically increasing sequence that is bounded
above. Thus, it must converge. To find the limit of (an), we utilise the fact
that lim

n→∞
an+1 = lim

n→∞
an (Sheet 1 : Problem 6). Let L denote the limit of (an).

Taking the limit of the recursive definition (and using some limit properties),
we have that

L = 3 +
L

2
=⇒ L = 6

Thus, the sequence (an) converges to 6. (Notice that this was the upper bound
we chose for (an))
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7 If lim
n→∞

an = L 6= 0, show that there exists n0 ∈ N such that

|an| ≥
|L|
2
, ∀n ≥ n0

Solution. We will use the ε−N definition to prove this result. Choose ε =
|L|
2

.

Since L 6= 0, we have ε > 0. Now, as an → L, there exists n0 ∈ N such that
|an − L| < ε for all n ≥ n0. From triangle inequality, we have

||an| − |L|| ≤ |an − L| < ε =⇒ −ε < |an| − |L| ∀n ≥ n0

Substituting the value of ε, we get that

|an| >
|L|
2

for all n ≥ n0, as desired.

9 For given sequences {an}n≥1 and {bn}n≥1, prove or disprove the following state-
ments:

(i) {anbn}n≥1 is convergent if {an}n≥1 is convergent.

(ii) {anbn}n≥1 is convergent if {an}n≥1 is convergent and {bn}n≥1 is bounded.

Solution. This is a relatively short question. Both the statements are false.
Verify that an := 1 and bn := (−1)n acts as a counterexample for both the
statements.
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11 Let f, g : (a, b) → R be functions and suppose that lim
x→c

f(x) = 0 for c ∈ [a, b].

Prove or disprove the following statements.

(i) lim
x→c

[f(x)g(x)] = 0.

(ii) lim
x→c

[f(x)g(x)] = 0 if g is bounded.

(iii) lim
x→c

[f(x)g(x)] = 0 if lim
x→c

g(x) exists.

Solution. (i) This statement is false. As a counterexample, define a = −1, b =
1 and c = 0. Define f, g : (−1, 1)→ R as

f(x) = x and g(x) =

{
1 if x = 0
1
x2

if x 6= 0

Clearly, lim
x→0

f(x) = 0. However, lim
x→0

[f(x)g(x)] does not exist.

(ii) This statement is true. Since g is bounded, there exists M > 0 such that

|g(x)| ≤M

for all x ∈ (a, b). Thus, we have

0 ≤ |f(x)g(x)| ≤M |f(x)|

for all x ∈ (a, b). Using Sandwich Theorem, we see that

lim
x→c
|f(x)g(x)| = 0

which in turn implies that

lim
x→c

[f(x)g(x)] = 0

(iii) This statement is true. Since lim
x→c

g(x) exists, we have lim
x→c

[f(x)g(x)] =

lim
x→c

f(x) · lim
x→c

g(x) = 0.
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§2. Week 2

2nd December, 2020

Sheet 1.

13 (ii) Discuss the continuity of the following function :

f(x) =

x sin

(
1

x

)
if x 6= 0

0 if x = 0

Solution. At all points other than x = 0, the given function is trivially continu-
ous (since it is the product and composition of continuous functions). All that
remains is to check the continuity of f at the point x = 0. Note that

|f(x)| =
∣∣∣∣x sin

(
1

x

)∣∣∣∣ ≤ |x|
for all x 6= 0. Thus, we have

0 ≤ |f(x)| ≤ |x|

Utilising Sandwich Theorem, we see that

lim
x→0

f(x) = 0

Since f(0) is given to be 0, we see that lim
x→0

f(x) = f(0), proving continuity of

f at x = 0. Thus, f is continuous everywhere.
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15 Let f : R→ R be defined as follows.

f(x) =

x2 sin

(
1

x

)
if x 6= 0

0 if x = 0

Show that f is differentiable on R. Is f ′ a continuous function?

Solution. Clearly, f is differentiable for all x 6= 0. Using the chain rule and
product rule, we compute f ′ as

f ′(x) = 2x sin

(
1

x

)
− cos

(
1

x

)
for x 6= 0. Now, all that remains to be checked is the differentiability of f at
x = 0. We have

lim
h→0

f(h)− f(0)

h
= lim

h→0
h sin

(
1

h

)
From the previous question, this limit exists and is equal to 0. Thus, f is
differentiable on all of R and its derivative is defined as

f ′(x) =

2x sin

(
1

x

)
− cos

(
1

x

)
if x 6= 0

0 if x = 0

Clearly, f ′ is continuous at all x 6= 0. All that remains is to check continuity of
f ′ at x = 0. It turns out that f ′ is in fact not continuous at x = 0. We will use
the sequential criterion of continuity to prove this. Consider the sequence:

xn :=
1

2nπ
, n ∈ N

Clearly, xn → 0 as n→∞. However,

f ′(xn) =
��������2

2nπ
· sin (2nπ)− cos (2nπ) = −1

We see that lim
n→∞

f(xn) is −1, which is not equal to f ′(0). Hence, f ′ is not

continuous at x = 0. This is an example of a differentiable function whose
derivative is not continuous.
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18 Let f : R→ R satisfy

f(x+ y) = f(x) · f(y) for all x, y ∈ R

If f is differentiable at 0, then show that f is differentiable at every c ∈ R and
f ′(c) = f ′(0) · f(c).

Solution. We have that f(x+ y) = f(x) · f(y) for all x, y ∈ R. On substituting
x = y = 0, we obtain

f(0) = f(0) · f(0) =⇒ f(0) = 0 or 1

First, we consider the case that f(0) = 0. We have

f(x) = f(x+ 0) = f(x) · f(0) =⇒ f(x) = 0

for all x. Thus, f ≡ 0 is trivially differentiable and f ′(c) = 0 = f ′(0) · f(c) for
all c ∈ R.

Now consider that f(0) = 1. For all c ∈ R, we have

lim
h→0

f(c+ h)− f(c)

h
= lim

h→0

f(c)f(h)− f(c)f(0)

h
= f(c) ·

(
lim
h→0

f(h)− f(0)

h

)
If f is differentiable at 0, then the above limit exists. Thus, if f is differentiable
at 0, then it is differentiable at every c ∈ R and f ′(c) = f ′(0) · f(c).
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Optional Exercises.

7 Let f : (a, b) → R and c ∈ (a, b). Show that the following statements are
equivalent.

(i) f is differentiable at c.

(ii) There exists δ > 0, α ∈ R and a function ε1 : (−δ, δ) → R such that
lim
h→0

ε1(h) = 0 and

f(c+ h) = f(c) + αh+ hε1(h)

for all h ∈ (−δ, δ).

(iii) There exists α ∈ R such that

lim
h→0

(
|f(c+ h)− f(c)− αh|

|h|

)
= 0

Solution. To show the equivalence of statements (i)-(iii), we must show that
every statement implies every other statement, that is, a total of 6 implications.
However, we can get away with just showing three implications. We will show
that (i) → (ii), (ii) → (iii) and (iii) → (i). This is sufficient to conclude the
equivalence of the three statements. (Why?)

(i) → (ii) : Since we are given that f is differentiable at c, f ′(c) exists. We
first pick δ := min {c− a, b− c}. Clearly δ > 0 and (c− δ, c+ δ) ⊂ (a, b). Now,
since f is differentiable at c, f ′(c) exists. Define α := f ′(c) and

ε1(h) =


f(c+ h)− f(c)− αh

h
if h 6= 0

0 if h = 0

Since (c− δ, c+ δ) ⊂ (a, b), f(c+ h) is well defined for all h ∈ (−δ, δ). Now,

lim
h→0

ε1(h) =

(
lim
h→0

f(c+ h)− f(c)

h

)
︸ ︷︷ ︸

α

−α = 0

Further, some simple algebraic manipulation yields that f(c+h) = f(c)+αh+
hε1(h) for h ∈ (−δ, δ), h 6= 0. Verify that this equation also holds for h = 0.
It then follows that f(c + h) = f(c) + αh + hε1(h) for all h ∈ (−δ, δ) and
lim
h→0

ε1(h) = 0, as desired.
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(ii) → (iii) : By (ii), we have the existence of δ > 0, α ∈ R and the function
ε1. We have

lim
h→0

|f(c+ h)− f(c)− αh|
|h|

= lim
h→0
|ε1(h)| = 0

(iii)→ (i) : By (iii), we have the existence of some α ∈ R such that

lim
h→0

|f(c+ h)− f(c)− αh|
|h|

= 0

Now,

lim
h→0

∣∣∣∣f(c+ h)− f(c)

h
− α

∣∣∣∣ = 0 =⇒ lim
h→0

f(c+ h)− f(c)

h
= α

Thus, f is differentiable at c, as desired.

Since we have shown (i) → (ii), (ii) → (iii) and (iii) → (i), we get that the
three statements are thus equivalent.

10 Show that any continuous function f : [0, 1]→ [0, 1] has a fixed point. x is said
to be a fixed point of f if f(x) = x

Solution. Consider the function g(x) = f(x) − x. A fixed point of f is then a
root of g. Note that g is continuous. Since 0 ≤ f(x) ≤ 1 for all x ∈ [0, 1], we
have

g(0) = f(0) =⇒ g(0) ≥ 0

and
g(1) = f(1)− 1 =⇒ g(1) ≤ 0

First consider the case that at least one of the two equalities hold. That is,
either g(0) = 0 or g(1) = 0 or both. In either of the three cases, we have at
least one fixed point (0 or 1 or both, respectively). Now, consider that g(0) > 0
and g(1) < 0. Since g is continuous, we can appeal to Intermediate Value
Theorem. By IVT, there exists some x0 ∈ (0, 1) such that g(x0) = 0. This
point x0 is also a fixed point of f . Thus, we have shown that any continuous
function mapping the unit interval to itself has a fixed point, as desired.
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Sheet 2.

3 Let f be continuous on [a, b] and differentiable on (a, b). If f(a) and f(b) are of
different signs and f ′(x) 6= 0 for all x ∈ (a, b), then show that there is a unique
x0 ∈ (a, b) such that f(x0) = 0.

Solution. Since f(a) and f(b) are of opposite signs and f is continuous, we know
that there exists at least one x0 ∈ (a, b) such that f(x0) = 0 (by IVP). Now,
assume that there was some y0(6= x0) in (a, b) such that f(y0) = 0. We now
have f(x0) = f(y0). By Rolle’s Theorem, there must exist some c ∈ (x0, y0)
such that f ′(c) = 0. Since this c also lies in (a, b), we arrive at a contradiction.
Hence, there is a unique x0 in (a, b) such that f(x0) = 0, as desired.

5 Use the MVT to show that |sin(a)− sin(b)| ≤ |a− b| for all a, b ∈ R.

Solution. We will break this problem into two cases. First, consider a = b.
The inequality is trivially satisfied in this case. Next, consider a 6= b. Define
f(x) = sin(x). By MVT, there exists some c between a and b such that

f ′(c) =
f(a)− f(b)

a− b

Since f ′ = cos, we take modulus on both sides to obtain∣∣∣∣sin a− sin b

a− b

∣∣∣∣ = |cos c| ≤ 1

Rearranging, we get
|sin a− sin b| ≤ |a− b|

for all a, b ∈ R, as desired.
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§3. Week 3

9th December, 2020

Sheet 2.

8 In each case, find a function f that satisfies all the given conditions, or else
show that no such function exists.

(ii) f ′′(x) ≥ 0 for all x ∈ R, f ′(0) = 1, f ′(1) = 2.

(iii) f ′′(x) ≥ 0 for all x ∈ R, f ′(0) = 1, f(x) ≤ 100 for all x > 0.

Solution.

(ii) Possible. Verify that f : R→ R with f(x) := x+
x2

2
is one such function.

(iii) Not possible. Assume that it was indeed possible to find such a function
f . Then, we are given that f ′′ exists everywhere. Thus, f ′ is continuous
and differentiable everywhere. As f ′′ is non-negative, f ′ must be increasing
everywhere. Since f ′(0) = 1, we have that f ′(c) ≥ 1 for all c > 0.

Let x ∈ (0,∞). By MVT, there exists c ∈ (0, x) such that

f ′(c) =
f(x)− f(0)

x− 0

Since c > 0, we have f ′(c) ≥ 1 as shown above. Thus, f(x)− f(0) ≥ x for
all x > 0. However, consider x0 := max (101− f(0), 1). Clearly, x0 > 0
(as it is ≥ 1). Also, f(x0) > 100, which contradicts the condition that
f(x) ≤ 100 for all x > 0. Hence, no such f can exist.
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10 (i) Sketch the following curves after locating intervals of increase/decrease, inter-
vals of concavity upward/downward, points of local minima/maxima, points of
inflection and asymptotes. How many times and approximately where does the
curve cross the x-axis?

y = 2x3 + 2x2 − 2x− 1

Solution. We are given

f(x) = 2x3 + 2x2 − 2x− 1

On differentiating, we get

f ′(x) = 6x2 + 4x− 2 = 2(x+ 1)(3x− 1)

Thus, f ′ > 0 in (−∞,−1) ∪ (1
3
,∞) and f is strictly increasing here. f ′ < 0 in

(−1, 1
3
) and f is strictly decreasing here. Thus, f has a local maximum at −1

and a local minimum at 1
3
. Differentiating again, we see that

f ′′(x) = 12x+ 4

Thus, f is convex in (−1
3
,∞) and concave in (−∞,−1

3
), with a point of inflection

at −1
3
. A curve for f can be sketched as follows

x

f(x)

−1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

14



11 Sketch a continuous function having all the following properties :

f(−2) = 8, f(0) = 4, f(2) = 0; f ′(−2) = f ′(2) = 0;

f ′(x) > 0 for |x| > 2, f ′(x) < 0 for |x| < 2;

f ′′(x) < 0 for x < 0, f ′′(x) > 0 for x > 0.

Solution. f ′ > 0 in (−∞,−2) ∪ (2,∞) and thus f is strictly increasing here.
f ′ < 0 in (−2, 2) and thus f is strictly decreasing here. Thus, f has a local
maximum at −2 and a local minimum at −2. The function values at these
points are 8 and 0 respectively. Also, f is convex in (0,∞) and concave in
(−∞, 0) with an inflection point at 0. Putting all these together, we can sketch
a curve for f as:

x

f(x)

−3 −2 −1 0 1 2 3

1

2

3

4

5

6

7
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Sheet 3.

1 (ii) Write down the Taylor expansion of arctan(x) around the point 0. Also write
a precise remainder term Rn(x).

Solution. Let f denote the arctangent function. Let g denote its derivative

g(x) = f ′(x) =
1

1 + x2

For |x| < 1, we can expand the latter as a geometric series. Thus, we have

g(x) = 1− x2 + x4 − x6 + . . . =
∞∑
k=0

(−1)kx2k

for |x| < 1. Let us now evaluate the nth derivative of f at x = 0. For n ≥ 1,
we have

f (n) = g(n−1)

where f (r) and g(r) denote the rth derivatives of f and g respectively. To evaluate
the derivatives of g, we will consider two cases. First, we will evaluate all odd
derivatives (derivatives of the order 2n − 1). On differentiating g, r times, we
will be left with a power series where the powers of x are of the form (2k−r) for
integer k. When r is odd, no exponent of x vanishes. As a result, all the terms
of the power series vanish when we plug in x = 0. Thus, all odd derivatives of
g vanish at 0. I leave it to you to compute the even order derivatives at x = 0.
The derivatives of g at 0 are then given by

g(2n−1)(0) = 0, g(2n)(0) = (−1)n · (2n)!

for n ≥ 1. Now, we have

f 2n(0) = g(2n−1)(0) = 0

and
f (2n−1)(0) = g(2n−2)(0) = (−1)n−1 · (2n− 2)!

for n ≥ 1. We shall first compute the zeroth Taylor Polynomial. We have

T0(x) = f(0) = 0

Let us now compute the nth Taylor polynomial Tn(x) of f at 0 for n ≥ 1. Define
M :=

⌊(
n+1
2

)⌋
. For n ≥ 1, we then have

Tn(x) =
n∑
k=0

f (k)(0)

k!
xk

16



where f (0) = f . With a bit of manipulation, we can write

Tn(x) =
M∑
k=1

(−1)k−1 · (2k − 2)!

(2k − 1)!
· x2k−1

Thus, the nth Taylor polynomial for arctan at 0 is given by

Tn(x) =
M∑
k=1

(−1)k

2k − 1
x2k−1 , M =

⌊(
n+ 1

2

)⌋

Writing it out in a neater way, we have

T2n−1(x) = x− x3

3
+ . . .+

(−1)n−1

2n− 1
x2n−1

and
T2n(x) = T2n−1(x)

The remainder term is then just the difference of the arctangent function at x
and its Taylor polynomial. More precisely, we have

Rn(x) = arctan(x)−
M∑
k=0

(−1)k

2k − 1
x2k−1

withM defined as previously. Let us now calculate the remainder term R2n−1(x)
more explicitly. We have

arctan′ = 1− x2 + x4 + . . .+ (−1)n−1x2n−2 + (−1)nx2n
[
1− x2 + x4 − . . .

]
∴ arctan′ = 1− x2 + x4 + (−1)n−1x2n−2 + (−1)n

x2n

1 + x2

On integrating both sides from 0 to x, the cyan-coloured term just becomes
T2n−1(x). (Verify!) Thus, we have

arctan(x) = T2n−1(x) + (−1)n
∫ x

0

t2n

1 + t2
dt

Thus,

R2n−1(x) = (−1)n
∫ x

0

t2n

1 + t2
dt

and
R2n(x) = R2n−1(x)

17



2 Write down the Taylor series of the polynomial x3 − 3x2 + 3x − 1 about the
point 1.

Solution. The Taylor series is just (x−1)3. Let us see why. We wish to expand

f(x) = x3 − 3x2 + 3x− 1

about the point a = 1. We have

f(1) = 0

f (1)(1) = 0

f (2)(1) = 0

f (3)(1) = 6

f (n)(1) = 0 for all n ≥ 4

Thus, we have
P0(x) = P1(x) = P2(x) = 0

P3(x) =
6

3!
(x− 1)3 = (x− 1)3

and
Pn(x) = P3(x) for all n ≥ 4

We also have
Rn(x) := f(x)− Pn(x) = 0 for all n ≥ 3

Thus, Rn(x) → 0 for all x. Thus, the Taylor series of the function about the
point 1 is simply given by (x− 1)3.

4 Consider the series
∞∑
k=0

xk

k!
for a fixed x. Prove that it converges as follows.

Choose N > 2|x|. We see that for n > N ,∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣ < 1

2
·
∣∣∣∣xnn!

∣∣∣∣
It should now be relatively easy to show that the given series is Cauchy, and
hence (by the completeness of R) is convergent.

Solution. Let the partial sums of the series be denoted as Sm(x). That is,

Sm(x) :=
m∑
k=0

xk

k!

18



We wish to show that the difference |Sm(x)− Sn(x)| can be made arbitrarily
small whenever m and n are sufficiently large. Assume that m > n > N . We
see that

|Sm(x)− Sn(x)| =

∣∣∣∣∣
m∑

k=n+1

xk

k!

∣∣∣∣∣ ≤
∣∣∣∣xnn!

∣∣∣∣ (1

2
+

1

4
+ . . .+

1

2m−n

)
≤
∣∣∣∣xnn!

∣∣∣∣< ∣∣∣∣xNN !

∣∣∣∣
Now for any ε > 0, we can pick N large enough such that∣∣∣∣xNN !

∣∣∣∣ < ε

This is possible because the sequence

an =
|x|n

n!

is convergent (it is eventually decreasing and bounded below) and its limit is 0.
Thus, for all m > n > N , we have

|Sm(x)− Sn(x)| < ε

Hence, the given series is Cauchy and thus convergent.

(Remark: During the tutorial session, I had showed that the term |Sm(x)− Sn(x)|
can be made arbitrarily small by picking n large enough. However, this is in-
correct! We want to show that the term is smaller than ε for any n,m greater
than N . So really we have to make N large enough and conclude. This is what
I have now done.)
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5 Using Taylor series, write down a series for the integral∫
ex

x
dx

Solution. We will assume that a Taylor series can be integrated term by term
and then proceed. Recall that the Taylor series for ex is given by

ex =
∞∑
k=0

xk

k!

We have ∫
ex

x
dx =

∫ (
1

x
+
∞∑
k=1

xk−1

k!

)
dx

=

∫
1

x
dx+

∫ ( ∞∑
k=1

xk−1

k!

)
dx

Since the latter term is a Taylor series, we can integrate it term by term to
obtain ∫

ex

x
dx = log x+

∞∑
k=1

(∫
xk−1

k!
dx

)
Thus, a series representation of the integral is given by∫

ex

x
dx = log x+

∞∑
k=1

xk

k · k!
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§4. Week 4

16th December, 2020

Sheet 4.

2 (a) Let f : [a, b] → R be Riemann integrable and f(x) ≥ 0 for all x ∈ [a, b]. Show

that

∫ b

a

f(x) dx ≥ 0. Further, if f is continuous and

∫ b

a

f(x) dx = 0, show that

f(x) = 0 for all x ∈ [a, b].

Solution. Let P = {a = x0 < x1 < . . . < xn = b} denote a partition of [a, b].
Define ∆xi = xi − xi−1 for 1 ≤ i ≤ n. Further, we define

mi = inf {f(x) : xi−1 ≤ x ≤ xi}

Since f(x) ≥ 0 for all x ∈ [a, b], it follows that mi ≥ 0 for all i. The lower sum
is now defined as

L(P, f) =
n∑
i=1

mi∆xi

Since mi ≥ 0 and ∆xi > 0 for all i, it follows that L(P, f) ≥ 0 for any partition
P . Thus, we also see that L(f) ≥ 0 since L(f) is the supremum of L(P, f) over
all partitions P . Since f is Riemann integrable, we have∫ b

a

f(x) dx = L(f) ≥ 0

as desired.

Now, let us further assume that f is continuous and that
∫ b
a
f(x) dx = 0. If f is

not identically zero, then there exists c ∈ [a, b] such that f(c) > 0. Continuity
of f implies that there exists a δ > 0 such that, if x ∈ [a, b],

|x− c| < δ =⇒ |f(x)− f(c)| < f(c)

2
=⇒ f(x) >

f(c)

2

We may now assume c ∈ (a, b) without any loss of generality 1 Further, pick
δ > 0 small enough so that (c− δ, c+ δ) ⊂ (a, b). Now, consider the partition

P =

{
a, c− δ

2
, c+

δ

2
, b

}
1If c = a or c = b, then we can pick another point c̃ in (a, b) such that f(c̃) 6= 0.
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Since we have

inf
x∈[c− δ

2
,c+ δ

2
]
f(x) ≥ f(c)

2

it follows that

L(f) ≥ L(P, f) ≥ f(c)δ

2
> 0

Further, if f is Riemann integrable, we have that its integral over [a, b] is equal
to L(f), which is strictly positive - a contradiction! Hence, f must be identically
zero.

Alternate. (easier)

Solution. Consider the trivial partition P0 = a, b of [a, b]. Since f(x) ≥ 0 for
all x ∈ [a, b], we have

inf
x∈[a,b]

f(x) ≥ 0

We have

L(f, P0) =

[
inf

x∈[a,b]
f(x)

]
· (b− a) ≥ 0

and
L(f) ≥ L(f, P0) ≥ 0

Since f is Riemann integrable, its integral is L(f), which is non-negative, as
desired.

For the second part, define F : [a, b]→ R as

F (x) =

∫ x

a

f(t) dt

Since f is continuous, we get that F is differentiable with F ′ = f , from the
Fundamental Theorem of Calculus (Part 1). Since f ≥ 0, we have F ′ ≥ 0 and
hence, F is increasing. This implies that for all x ∈ [a, b], we have

F (a) ≤ F (x) ≤ F (b)

However, since F (a) = 0 = F (b), we get that F is constant and hence,

f(x) = F ′(x) = 0

for all x ∈ [a, b], as desired.
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2 (b) Give an example of a Riemann integrable function on [a, b] such that f(x) ≥ 0

for all x ∈ [a, b] and
∫ b
a
f(x) dx = 0, but f(x) 6= 0 for some x ∈ [a, b].

Solution. As we saw in the previous question, no continuous function can satisfy
these conditions. Thus, we must look for a discontinuous function. We define
f on [0, 1] as follows:

f(x) =

{
0 when x 6= 1

2

1 when x = 1
2

Since f has only finitely many discontinuities, it is Riemann integrable. Also,
f(x) ≥ 0 for all x ∈ [0, 1]. Further, it is easy to show that its Riemann integral
over the interval is 0. Lastly, we have f(1

2
) = 1 6= 0. Thus, f(x) 6= 0 for some

x ∈ [0, 1]. Hence, this f satisfies our desired conditions.
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3 Evaluate lim
n→∞

Sn by showing that Sn is an approximate appropriate Riemann

sum of a suitable function over a suitable interval.

(ii) Sn =
n∑
i=1

n

i2 + n2 (iv) Sn =
1

n

n∑
i=1

cos
iπ

n

We shall use the following theorem for both the parts.

Theorem

Let f : [a, b] → R be Riemann integrable. Suppose that (Pn, Tn) be a se-
quence of tagged partitions of [a, b] such that ‖Pn‖ → 0. Then,

R(Pn, Tn, f)→
∫ b

a

f(t) dt

(ii) Solution. Consider f : [0, 1] → R defined as f(x) := arctan(x). Then, we
have

f ′(x) =
1

1 + x2

Since f ′ is continuous on [0, 1], it is Riemann integrable on [0, 1]. Let
Pn :=

{
xi = i

n
: 0 ≤ i ≤ n

}
be a tagged partition of [0, 1] for n ∈ N and let

Tn :=
{
ti = i

n
: 1 ≤ i ≤ n

}
denote the tags of the partition.

We have ∆xi = xi − xi−1 = 1
n

for all 1 ≤ i ≤ n. The Riemann sum
corresponding to this tagged partition is given by

R(Pn, Tn, f
′) =

n∑
i=1

f ′(ti)∆xi =
n∑
i=1

1

1 + t2i
· 1

n

=
n∑
i=1

1

1 +
(
i
n

)2 · 1

n

=
n∑
i=1

n

i2 + n2
= Sn

Thus, R(Pn, Tn, f
′) = Sn for all n ≥ 1. Moreover,

‖Pn‖ = max {xi − xi−1 : 1 ≤ i ≤ n} =
1

n

Clearly, we have
lim
n→∞

‖Pn‖ = 0
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and thus,

lim
n→∞

Sn =

∫ 1

0

f ′(x) dx

From the Fundamental Theorem of Calculus (Part 2), we have that

lim
n→∞

Sn =

∫ 1

0

f ′(x) dx = f(1)− f(0) =
π

4

(iv) Solution. Consider f : [0, 1]→ R defined as

f(x) :=
1

π
sin(πx)

We then have f ′(x) = cos(πx). Since f ′ is continuous on [0, 1], it is Rie-
mann integrable on [0, 1]. Let Pn :=

{
xi = i

n
: 0 ≤ i ≤ n

}
be a tagged

partition of [0, 1] for n ∈ N and let Tn :=
{
ti = i

n
: 1 ≤ i ≤ n

}
denote the

tags of the partition.

We have ∆xi = xi − xi−1 = 1
n

for all 1 ≤ i ≤ n. The Riemann sum
corresponding to this tagged partition is given by

R(Pn, Tn, f
′) =

n∑
i=1

f ′(ti)∆xi =
n∑
i=1

cos(πti) ·
1

n

=
1

n

n∑
i=1

cos
iπ

n
= Sn

Thus, R(Pn, Tn, f
′) = Sn for all n ≥ 1. Moreover,

‖Pn‖ = max {xi − xi−1 : 1 ≤ i ≤ n} =
1

n

Clearly, we have
lim
n→∞

‖Pn‖ = 0

and thus,

lim
n→∞

Sn =

∫ 1

0

f ′(x) dx

From the Fundamental Theorem of Calculus (Part 2), we have that

lim
n→∞

Sn =

∫ 1

0

f ′(x) dx = f(1)− f(0) = 0
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4(b) Compute
dF

dx
if for x ∈ R,

(i) F (x) =

∫ 2x

1

cos
(
t2
)

dt (ii) F (x) =

∫ x2

0

cos(t) dt

Solution. Before solving these two subparts, I will first prove a short lemma.

Lemma

Let f : R → R be continuous and let v : R → R be differentiable. Let
F : R→ R be defined as

F (x) :=

∫ v(x)

0

f(t) dt

Then,
F ′(x) = f (v(x)) · v′(x)

Proof. First, we define G : R→ R as

G(x) :=

∫ x

0

f(t) dt

Then, G′ = f by the Fundamental Theorem of Calculus (Part 1). Now,

F (x) = G (v(x))

A simple application of chain rule yields

F ′(x) = f (v(x)) · v′(x)

as desired.

(i) We have v(x) = 2x and f(t) = cos(t2). It thus follows from the above
lemma that

dF

dx
= cos

(
(2x)2

)
· (2x)′ = 2 cos

(
4x2
)

(ii) We have v(x) = x2 and f(t) = cos(t). It thus follows from the above
lemma that

dF

dx
= cos

(
x2
)
·
(
x2
)′

= 2x cos
(
x2
)
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6 Let f : R→ R be continuous and λ ∈ R, λ 6= 0. For x ∈ R, let

g(x) =
1

λ

∫ x

0

f(t) sinλ(x− t) dt

Show that g′′(x) + λ2g(x) = f(x) for all x ∈ R and g(0) = g′(0) = 0.

Solution. We will first make use of the identity sin (A−B) = sinA cosB −
cosA sinB. We have

g(x) =
1

λ

∫ x

0

f(t) sinλ(x− t) dt

=
1

λ

∫ x

0

f(t) (sinλx cosλt− cosλx sinλt) dt

=
1

λ
sinλx

∫ x

0

f(t) cosλt dt− 1

λ
cosλt

∫ x

0

f(t) sinλt dt

On applying the product rule and Fundamental Theorem of Calculus (Part 1),
we get

g′(x) = cosλx

∫ x

0

f(t) cosλt dt+
������������
1

λ
sinλx · f(x) · cosλx

+ sinλx

∫ x

0

f(t) sinλt dt−
������������
1

λ
sinλx · f(x) · cosλx

∴ g′(x) = cosλx

∫ x

0

f(t) cosλt dt+ sinλx

∫ x

0

f(t) sinλt dt

It is now easy to verify that both g(0) and g′(0) are indeed 0. We will differen-
tiate g′ in a similar manner to obtain

g′′(x) = −λ sinλx

∫ x

0

f(t) cosλt dt+ f(x) cos2 λx

+ λ cosλx

∫ x

0

f(t) sinλt dt+ f(x) sin2 λx

= f(x)− λ2
(

1

λ

∫ x

0

f(t) (sinλx cosλt− cosλx sinλt) dt

)
= f(x)− λ2g(x)

It thus follows that g′′(x) + λ2g(x) = f(x) for all x ∈ R, as desired.
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§5. Week 5

23rd December, 2020

Sheet 5

2 Describe the level curves and contour lines for the following functions corre-
sponding to the values c = −3,−2,−1, 0, 1, 2, 3, 4.

(ii) f(x, y) = x2 + y2 (iii) f(x, y) = xy

(ii) Solution. (x2 + y2 = c)

For c = −3,−2,−1, level curves and contour lines are empty sets. For
c = 0, the level curve is the point (0, 0) ∈ R2 and the contour line is the
point (0, 0, 0) ∈ R3. For any c ∈ {1, 2, 3, 4}, the level curve is a circle in
the xy plane, centered at the origin, with radius

√
c. More precisely, the

level curve is the set L = {(x, y) ∈ R2 | x2 + y2 = c}. The contour line is
a cross-section in R3 of the paraboloid z = x2 + y2 by the plane z = c.
That is, a circle in the plane z = c, centered at (0, 0, c) and with radius√
c. More precisely, the contour line is the set L× {c}.

(iii) Solution. (xy = c)

For c = 0, the level set is the union of the x and y axes in the xy-plane.
Precisely, this is the set L = {(x, y) ∈ R2 | x = 0 or y = 0}. The contour
line corresponding to c = 0 is the union of the x and y axes in the xyz-
space. This is the set L × {0}. For any non-zero c, the level curve is the
rectangular hyperbola xy = c and the contour line is the cross-section of
the hyperboloid z = xy by the plane z = c. More precisely, the level curve
is the set L = {(x, y) ∈ R2 | xy = c} and the contour line is the set L×{c}.
For negative c, the level curve (and the contour line) has branches in the
second and fourth quadrant while for positive c, the level curve (and the
contour line) has branches in the first and third quadrants.
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4 Suppose f, g : R→ R are continuous functions. Show that each of the following
functions of (x, y) ∈ R2 are continuous.

(i) f(x)± g(y) (ii) f(x)g(y)

(iii) max {f(x), g(y)} (iv) min {f(x), g(y)}

Solution. We will use sequential criterion of continuity. Just to recall:

Theorem: Sequential Criterion

Let f : R2 → R be a function. Then, f is continuous at (x0, y0) if and only
if for every sequence ((xn, yn)) converging to (x0, y0), we have

lim
n→∞

f (xn, yn) = f(x0, y0)

Let (x0, y0) be an arbitrary point of R2. Let (xn, yn) be an arbitrary sequence
in R2 such that (xn, yn)→ (x0, y0). We then have xn → x0 and yn → y0. Since
f and g are continuous, it follows that f(xn) → f(x0) and g(yn) → g(y0). For
(i) and (ii), note that we can now use algebra of limits to conclude that the
given functions are indeed continuous.

For (iii) and (iv), note the following:

max {f(x), g(y)} =
f(x) + g(y)

2
+
|f(x)− g(y)|

2

min {f(x), g(y)} =
f(x) + g(y)

2
− |f(x)− g(y)|

2

Again, consider ((xn, yn)) to be an arbitrary sequence converging to (x0, y0).
We then have xn → x0 and yn → y0. From the continuity of f, g it follows that
f(xn)→ f(x0) and g(yn)→ g(y). Thus, we have

f(xn) + g(yn)→ f(x0) + g(y0)

Since the modulus function is continuous, we also have

|f(xn) + g(yn)| → |f(x0) + g(y0)|

It then follows that

f(xn) + g(yn)

2
+
|f(xn)− g(yn)|

2
−→ f(x0) + g(y0)

2
+
|f(x0)− g(y0)|

2
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which can be rewritten as

max {f(xn), g(yn)} → max {f(x0), g(y0)}

concluding the proof for (iii). Similarly, the proof for (iv) follows.

Since the point (x0, y0) was arbitrary, it follows that the given functions are
continuous on all of R2.
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6 (ii) Examine the following functions for the existence of partial derivatives at (0, 0).
The expressions below give the value for (x, y) 6= (0, 0). At (0, 0), the value
should be taken to be zero.

sin2 (x+ y)

|x|+ |y|

Solution. Let f : R2 → R be the function given. That is,

f(x, y) =


sin2 (x+ y)

|x|+ |y|
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

For h 6= 0, we have
f(h, 0)− f(0, 0)

h
=

(
sin2 h

h|h|

)
It is easy to show that the above limit (as h goes to 0) does not exist (Take
strictly positive and strictly negative sequences converging to zero). Hence,

we see that
∂f

∂x1
(0, 0) does not exist. Similar arguments show that the second

partial does not exist either.
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8 Let f be defined as

f(x, y) =


x sin (1/x) + y sin (1/y) x 6= 0, y 6= 0

x sin (1/x) x 6= 0, y = 0

y sin (1/y) x = 0, y 6= 0

0 x = 0, y = 0

Show that none of the partial derivatives of f exist at (0, 0) although f is
continuous at (0, 0).

Solution. Let us first show that the given function is continuous at (0, 0). Let
(xn, yn) be a sequence in R2 such that (xn, yn) → (0, 0). This gives us that
xn → 0 and yn → 0. Now, note that

0 ≤ |f(xn, yn)| ≤ |xn|+ |yn|

for all (xn, yn) ∈ R2. Since (xn, yn) → (0, 0), we get that f(xn, yn) → 0 =
f(0, 0). Thus, the function is continuous at (0, 0).

Let us now show that neither partial derivatives of f at (0, 0) exist. For h 6= 0,
we have

f(h, 0)− f(0, 0)

h
= sin

1

h

The limit of the above expression as h→ 0, does not exist. Similar arguments
show that the second partial derivative does not exist either.
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10 Let f : R2 → R2 be defined as

f(x, y) =

{
y
|y|

√
x2 + y2 y 6= 0

0 y = 0

Show that f is continuous at (0, 0), ∇uf(0, 0) exists for every unit vector u and
yet, f is not differentiable at (0, 0).

Solution. First, we will show that f is indeed continuous at (0, 0). We will now
use the ε-δ condition (it’s easier to work with in this case). Note that we have

|f(x, y)− f(0, 0)| =

{√
x2 + y2 y 6= 0

0 y = 0

Thus, in general, we have

|f(x, y)− f(0, 0)| ≤
√
x2 + y2

Now, given any ε > 0, setting δ := ε works.

Let u = (u1, u2) be a unit vector in R2. If u2 6= 0, then for t 6= 0, we have

f(u1t, u2t)− f(0, 0)

t
=
f(u1t, 0)− 0

t

=
0− 0

t
= 0

For u2 6= 0 and t 6= 0, we have

f(u1t, u2t)− f(0, 0)

t
=

1

t

u2t

|u2t|

√
(u21 + u22) t

=
1

t

u2t

|u2t|
|t|

=
u2
|u2|

Thus, all directional derivatives exist and are given by

∇uf(0, 0) =

0 u2 = 0
u2
|u2|

u2 6= 0
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Setting u = (1, 0) and (0, 1) recovers the partial derivatives. We will now check
if f is differentiable.

If f is differentiable at (0, 0) then its total derivative must be

Df(0, 0) =

[
∂f

∂x1
(0, 0)

∂f

∂x2
(0, 0)

]
=
[
0 1

]
We will now check if this is indeed the total derivative. We must check whether

lim
(h,k)→(0,0)

|f(h, k)− f(0, 0)− 0h− 1k|√
h2 + k2

= 0

For k 6= 0, we have that

|f(h, k)− f(0, 0)− 0h− 1k|√
h2 + k2

=

∣∣∣∣ k|k| − k√
h2 + k2

∣∣∣∣
Along the curve h = k with k 6= 0, the above expression becomes∣∣∣∣ k|k| − k√

h2 + k2

∣∣∣∣ =

∣∣∣∣ k|k| − k√
2k2

∣∣∣∣ =

(
1− 1√

2

)

Clearly the limit of this expression is not zero (which is what we wanted it to
be). Thus, f is not differentiable at (0, 0).

Remark: The above does not show that the limit is
(

1− 1√
2

)
. In fact, the limit

does not exist at all. However, this is sufficient to show that the limit is not
zero (which is all we required).
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§6. Week 6

Sheet 6

(2) Find the directions in which the directional derivative of f(x, y) := x2 + sin xy
at the point (1, 0) is 1.

Solution. Since f is differentiable, we have that

∇uf(1, 0) = (∇f(1, 0)) · u

for any unit vector u. The partials of f can be computed as

fx(x0, y0) = 2x0 + y0 cosx0y0 and fy(x0, y0) = x0 cosx0y0

Thus, the gradient of f at (1, 0) is given by

∇f(1, 0) =
[
fx(1, 0) fy(1, 0)

]
=
[
2 1

]
Let u =

[
u1 u2

]
be an arbitrary unit vector. Taking the dot product and

equating it to 1 gives us

2u1 + u2 = 1 =⇒ u2 = 1− 2u1

Since u is a unit vector, we also have

u21 + u22 = 1

Substituting u2 in terms of u1, we get

u21 + (1− 2u1)
2 = 1 =⇒ 5u21 − 4u1 = 0

∴ u1 = 0 or
4

5

The corresponding values of u2 are 1 and −3
5
. Thus, the required directions are[

0 1
]

and
[
4
5
−3

5

]
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(4) Find ∇uF (2, 2, 1), where F (x, y, z) = 3x − 5y + 2z and u is the unit vector in
the direction of the outward normal to the sphere x2 + y2 + z2 = 9 at (2, 2, 1).

Solution. Let S(x, y, z) := x2+y2+z2 for (x, y, z) ∈ R3. We get that (∇S) (x0, y0, z0) =
2 (x0, y0, z0). That is, the direction of the outward normal to a sphere at a point
on the sphere is the direction of the vector joining the center of the sphere to
the point. Thus, the required unit vector u is

u =
1

3
(2, 2, 1)

The gradient of F (at (2, 2, 1)) can be calculated as

∇F (2, 2, 1) =
[
3 −5 2

]
Since F is differentiable, we have

∇uF (2, 2, 1) = (∇F (2, 2, 1)) · u = −2

3
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(5) Given sin (x+ y) + sin (y + z) = 1, find
∂2z

∂x ∂y
provided cos (y + z) 6= 0.

Solution. We are given that

sin(x+ y) + sin(y + z) = 1 (?)

Partially differentiating (?) with respect to x gives us

cos(x+ y) + cos(y + z) · ∂z
∂x

= 0 (†)

Similarly, partially differentiating (?) with respect to y gives us

cos(x+ y) + cos(y + z) ·
(

1 +
∂z

∂y

)
= 0 (‡)

Now, partially differentiating (‡) with respect to x, we get

− sin(x+ y)− sin(y + z) ·
(

1 +
∂z

∂y

)
·
(
∂z

∂x

)
+ cos(y + z) · ∂2z

∂x ∂y
= 0

On re-arranging and making substitutions for the terms in blue from (†) and
(‡), we get

∂2z

∂x ∂y
=

1

cos(y + z)

[
sin(x+ y) + sin(y + z) ·

(
1 +

∂z

∂y

)
∂z

∂x

]
=

1

cos(y + z)

[
sin(x+ y) + sin(y + z) ·

(
−cos(x+ y)

cos(y + z)

)
·
(
−cos(x+ y)

cos(y + z)

)]
=

sin(x+ y)

cos(y + z)
+ tan(y + z) · cos2(x+ y)

cos2(y + z)
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(8) Analyse the following functions for local maxima, local minima and saddle
points.

(i) f(x, y) = (x2 − y2) e−x
2+y2

2 (ii) f(x, y) = x3 − 3xy2

(i) Solution. First note that f is defined on all of R2 and all partial derivatives
of second order exist and are continuous everywhere. Thus, the second
derivative test is applicable. For (x0, y0) to be a point of local extremum
or a saddle point, we must have (∇f)(x0, y0) = 0. We have

fx(x, y) = x · e−
x2+y2

2 ·
(
−x2 + y2 + 2

)
fy(x, y) = y · e−

x2+y2

2 ·
(
−x2 + y2 − 2

)
Solving (∇f)(x0, y0) = 0 gives us the following set of solutions:

(x0, y0) ∈
{

(0, 0), (0,
√

2), (0,−
√

2), (
√

2, 0), (−
√

2, 0)
}

We will next use the determinant test to determine the exact nature of
these points. Recall

(∆f) (x0, y0) := fxx(x0, y0) · fyy(x0, y0)− (fxy(x0, y0))
2

For our case, we have

(∆f) (x, y) = −e−x2−y2·
(
x6 − x4y2 − 3x4 − x2y4 + 22x2y2 − 8x2 + y6 − 3y4 − 8y2 + 4

)
We also have

fxx(x, y) = e−
x2+y2

2 ·
(
x4 − x2y2 − 5x2 + y2 + 2

)
(0, 0) is clearly a saddle point as the discriminant is −4 < 0.

For (0,±
√

2), the discriminant turns out to be positive along with fxx
positive and hence, these are points of local minima. For (±

√
2, 0), the

discriminant turns out to be positive along with fxx negative and hence,
these are points of local maxima.
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(ii) Solution. Again, f is defined on all of R2 and all partial derivatives of
second order exist and are continuous everywhere. The second derivative
test is thus applicable. For (x0, y0) to be a point of local extremum or a
saddle point, we must have (∇f)(x0, y0) = 0. We have

fx(x, y) = 3x2 − 3y2

fy(x, y) = −6xy

Solving (∇f)(x0, y0) = 0 gives us the solution (0, 0). We will now utilise
the discriminant test to determine the nature of (0, 0).

We have
(∆) f(x0, y0) = −36(x20 + y20)

Thus, at the origin, the discriminant is zero and thus, the test is inconclu-
sive! Thus, we must use some other method to determining the nature at
the origin.

Note that f(x, 0) = x3. Given any ε > 0, we may define δ := ε
2
. We then

have
f(δ, 0) > f(0, 0) > f(−δ, 0)

Also,
(δ, 0), (−δ, 0) ∈ Dε(0, 0)

for any ε > 0. Thus, in any neighbourhood around (0, 0) we can find points
where the value that the function attains is both greater as well as lesser
than the value attained at (0, 0). Hence, (0, 0) is neither a local minima
nor a local maxima, and hence, a saddle point by definition.
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(9) Find the absolute maximum and absolute minimum of

f(x, y) =
(
x2 − 4x

)
· cos y for 1 ≤ x ≤ 3,−π

4
≤ y ≤ π

4

Solution. Observe that the domain is a closed and bounded set. Since f is
continuous on the domain, it does achieve a maximum and a minimum. For
interior points (x, y), we have

fx(x, y) = (2x− 4) · cos y

fy(x, y) = −
(
x2 − 4x

)
· sin y

Thus, the only critical point is (2, 0).

Next, we will check the ‘right boundary’, that is, we will restrict ourselves to
x = 3. Here, the function reduces to −3 cos y for y ∈

[
−π

4
, π
4

]
. We can now

treat this as a function of one variable. The boundary points here are
(
3,−π

4

)
and

(
3, π

4

)
and the critical point is (3, 0). Similarly, the ‘left boundary’ gives

us the points
(
1,−π

4

)
, (1, 0) and

(
1, π

4

)
. Similarly, the top boundary gives us

the points
(
1, π

4

)
,
(
2, π

4

)
and

(
3, π

4

)
whereas the bottom boundary gives us the

points
(
1,−π

4

)
,
(
2,−π

4

)
and

(
3,−π

4

)
. Now, all we need to do is calculate the

value f takes at these points and compare.

(x0, y0) f(x0, y0)
(2, 0) −4
(3, 0) −3

(3, π/4) −3/
√

2

(2, π/4) −4/
√

2

(1, π/4) −3/
√

2
(1, 0) −3

(1,−π/4) −3/
√

2

(2,−π/4) −4/
√

2

(3,−π/4) −3/
√

2

Thus, we get fmin = −4 at (2, 0) and fmax = − 3√
2

at (1,±π/4) and (3,±π/4).
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