
EECS 592: A Gene Expression Programming
approach to designing Convolutional Neural

Network Architectures
Deepak Nagalla

University of Michigan
Ann Arbor, MI, USA

Email: ndeepak@umich.edu

Ishan Kapnadak
University of Michigan

Ann Arbor, MI, USA
Email: kapnadak@umich.edu

Naman Bhargava
University of Michigan

Ann Arbor, MI, USA
Email: namanb@umich.edu

I. INTRODUCTION & RELATED WORK

Convolutional Neural Networks (CNNs) have risen
sharply in popularity over the last decade or so due to
their versatility and success in solving a variety of com-
puter vision as well as language tasks. Moreover, CNNs
present themselves as a versatile AI solution to many
problems due to the flexibility of their architectures. A
typical state-of-the-art CNN architecture today consists
of several convolutional layers, pooling layers, and fully
connected layers. With the tasks at hand becoming
more and more challenging, CNN architectures have also
become more and more complex. Today it is not too
uncommon to see an extremely deep CNN architecture
with several millions of parameters. Although versatile,
this also poses a huge challenge since the problem of
finding the right CNN architecture also becomes more
and more difficult.

Traditionally, the architecture of the convolutional
network was often designed by hand, after taking into
consideration the problem statement, and the data. How-
ever, there has been a lot of recent work that tries to
automate this process in a bid to come up with an
intelligent approach that can efficiently pick a CNN
architecture that is near-optimal for the task at hand.
One approach that has been taken is to optimize the
hyperparameters using a machine learning approach.
Here, some pre-defined properties of the network (such
as the number of layers and sizes, activation functions,
etc.) are optimized using approaches such as grid search
or gradient methods [1], random search [2], or Bayesian
method [3]. However, such methods are often restrictive
since they assume a fixed architecture (in terms of what
layers are used and how they are connected) and only
optimize the parameters of those layers.

Another approach that has been growing in popular-
ity is the use of evolutionary algorithms to optimize
networks. [4] provides a thorough survey of a lot of
these approaches. There has also been work that uses
Cartesian Genetic Programming (CGP) to design CNN
architectures [5]. However, CGP is a tree-based ap-
proach and is quite resource-intensive. Another popular
evolutionary approach to optimization is through the
use of Gene Expression Programming (GEP) [6]. The
aim of our project is to replicate the approach in [5]
using both CGP as well as GEP. We will use the CGP
approach as a baseline and compare the performance of
the GEP approach with respect to this baseline. Although
there has been some previous work that uses GEP in
conjunction with CNN architectures [7], this has been
focused on applications in cybersecurity. Our approach,
in contrast, is focused on image classification (similar to
[5]).

II. PROBLEM SET-UP

The goal of our rational agent is to find the optimal
convolutional neural network architecture for a given
image classification problem. The agent is given access
to all the training images and their labels. The agent is
expected to return the CNN architecture that has optimal
performance for this task.

The agent is tested on the CIFAR-10 dataset [8] which
is one of the most common datasets used for the task
of image classification. The CIFAR-10 dataset consists
of 50, 000 training images and 10, 000 test images.
Images are categorized into 10 different categories such
as aeroplanes, automobiles, birds, cats, etc. Further, all
categories are equally represented in the dataset with
each category having 6, 000 images corresponding to it.
Moreover, the categories are also mutually exclusive, so



that each image belongs to exactly one category. The
images all have size 32× 32 pixels.

Before the training dataset is passed to the agent,
we perform some pre-processing steps on the images.
Firstly, all images are normalized so that each pixel
value is between 0 and 1. Further, to reduce computation
time, all images are also converted to grayscale. Finally,
we also apply histogram equalization to the images to
enhance contrast. Moreover, we randomly split the train-
ing data further into 45, 000 training images and 5, 000
validation images. The agent uses the training images
to train itself and the validation images to compute the
accuracies of various architectures that it generates as
part of its algorithm.

III. METHODOLOGY

A. Gene Expression Programming

1) Gene Encoding and Decoding: For Gene Expres-
sion Programming, we use the method proposed in [7].
For the purpose of this project, we restrict our network
to have two kinds of layers – (i) Convolutional layers
(denoted C), and (ii) Dense layers or Fully connected
layers (denoted F ). Further, the network is organized so
that the input layer first passes through all the convolu-
tional layers and then through all the dense layers. Each
convolutional layer is followed by a max pooling layer.
At the end of the network, we add a dense layer with
10 outputs since our image classification problem has
10 categories or labels. A CNN architecture following
these properties can then be encoded as a multiset (a set
in which the order of elements does not matter but their
multiplicity matters). For two arbitrary elements A and
B, we define the following properties that we will use.

1) Commutativity. A ∪B = B ∪A, A ∩B = B ∩A.
2) Union, Intersection. A ∪B = {A,B}, A ∩B = ∅.
3) Null Operations. ∅ ∪A = A, ∅ ∩A = ∅.
4) A ∪A = {A,A}, A ∩A = {A}.
5) A ∪ {A,B} = {A,A,B}, A ∩ {A,B} = {A}.

Note that crucially, we have A ∪ A = {A,A} which
differs from the usual notion of union. This is because
the multiplicities of elements matter.

A GCNN gene is defined as a vector G = 〈Gh, Gt〉
where Gh denotes the gene head and Gt denotes the
tail head. We use the terminal set T := {C,F} and
the function set F := {∪,∩}. That is, elements of the
CNN architecture representation are drawn from T and
combined using operations from F . The gene head Gh

draws its elements from F and the gene tail Gt draws

its elements from T . Assuming that each operation in F
takes exactly 2 operands, we have the relation

lt = lh + 1

where lh, lt denote the length of the gene head and gene
tail. An example of a random gene of length 11 (with
lh = 5 and lt = 6) is shown below.

0 1 2 3 4 5 6 7 8 9 10
G1 ∪ ∪ ∩ ∩ ∪ C C F F C C

Once a gene sequence has been created, it can be
decoded using an expression tree. We first parse the head
of the gene and arrange all the operations seen into a
binary tree. Once this binary tree is created, we parse the
tail of the gene and assign all elements to the leaves of
the operation tree going from left to right. For example,
the gene G1 depicted above is converted to the following
expression tree.

∪

∪

∩

C C

∪

F F

∩

C C

The final layout of the resulting CNN can be computed
by decoding this expression tree. For example, the above
tree can be decoded using a recursive approach. The
resulting multiset is

(C ∩ C) ∪ (F ∪ F ) ∪ (C ∪ C) = {C} ∪ {F, F} ∪ {C}
= {C,C, F, F}.

Since both T and F have two elements, we have
encoded a gene vector G as a bit string. A 0 in the
head represents a ∪ and a 1 in the head represents a
∩. Similarly, a 0 in the tail represents a C and a 1
in the tail represents an F . Thus, we have shown how
a bitstring can be encoded into an expression tree and
further decoded into the resulting CNN architecture. One
redundancy that arises in this method is that a bitstring
may give rise to an architecture that has only convolu-
tional layers or only dense layers, or in the worst case,
has no layers at all! A simple workaround is to check if
the resulting multiset contains both kinds of layers, and
if not, add one of each type to the architecture.



2) Genetic Algorithm: Once the genes are formalized,
it remains to define the evolution algorithm that we use.
We have used two variants for our project.

1) Crossover Mutation
2) (1 + λ) Evolutionary Algorithm
The first algorithm we implemented was crossover

mutation. Here, we maintained a population size of 10,
with the initial 10 genes being picked uniformly at
random. At each evolutionary stage, we first compute
the fitness of all the individuals in the population (the
fitness is given by the accuracy of the trained network on
the validation data). Once the fitnesses are computed, we
define a probability distribution on these 10 individuals
that assigns a weight proportional to the fitness. We then
generate a new generation of individuals in the following
manner. We first sample two parents from the popula-
tion according to the above-defined distribution. These
parents then reproduce (via picking a random crossover
point and merging the two genes at the crossover point)
to give a child gene. This child gene is then mutated
where each bit is flipped randomly with some mutation
probability. We keep track of the optimal fitness and the
optimal gene. After some fixed number of generations,
we return the optimal gene and declare the architecture
defined by this gene as our final designed architecture.

The second genetic algorithm we implemented was
the (1 + λ) Evolutionary Algorithm which is studied in
[9], [10]. Here, we maintain just one parent. At each
iteration, we generate λ offsprings from the parent using
forced mutation. In contrast to the mutation defined in
the previous algorithm (which we call neutral mutation),
here we pick one bit from the bitstring at random and
forcibly flip it. This has the added advantage that each
offspring is guaranteed to be different from its parent.
Once the offsprings are generated, we also mutate the
parent using neutral mutation. These 1 + λ individuals
are then evaluated and the gene with the highest fitness
is chosen as the parent of the next generation.

B. Cartesian Genetic Programming

We also implement Cartesian Genetic Programming
(CGP) based on [5] to serve as our baseline. The CGP
encoding scheme represents a CNN architecture with a
two-dimensional grid with Nr rows and Nc columns
(these determine the depth and width of the CNN ar-
chitecture). We also use highly functional computational
blocks as our node functions. The algorithm proposed
by the authors uses six functional blocks – ResBlock,
ConvBlock, Average Pooling, Max Pooling, Summation,
and Concatenation. CNN architectures are represented

via genotypes and phenotypes. Genotypes are arrays of
fixed lengths where each element corresponds to a node
in the grid and holds information about its function and
connections. the phenotype is the actual CNN architec-
ture that is generated by decoding the genotype (this may
have variable length due to some nodes being inactive).
An example of a 2 × 3 grid is shown in Figure 1 with
Figure 2 showing the corresponding genotype and 3
showing the corresponding phonetype.

Fig. 1. Example 2x3 grid used by CGP

Fig. 2. Genotype Corresponding to grid in Fig. 1

Fig. 3. Phenotype Representation Corresponding to grid in Fig. 1

The authors use a (1+λ) evolutionary algorithm with
point mutation, as describe in detail in the previous
subsection. We also allow the ConvBlock and ResBlock
some flexibility in parameters, with the number of filters
being chosen from {32, 64, 128} and kernel size being
chosen from {3 × 3, 5 × 5}. We use a mutation rate of
0.05, and grid size of 5 × 30. While the authors ran
the algorithm for 500 generations with each architecture
being trained for 500 epochs, we did not have the
computational resources to do so. As a result,



C. Parameter Settings and Evaluation for GEP

For the crossover mutation algorithm, we maintain a
population size of 10. We allow the evolution algorithm
to go up to 50 generations. We use a mutation probability
of 0.1 and maintain a gene length of 11. For the (1+λ)
EA, we use λ = 2. We again use a gene length of 11,
mutation probability of 0.1, and maximum number of
generations 50.

For the CNN architecture, the first convolutional layer
has 32 filters whereas each subsequent convolutional
layer has 64 filters. Each convolutional layer uses a
kernel size of 3× 3, with ReLU activation and padding.
The first dense layer is preceded by a flatten layer, and
each dense layer has an output size of 64. The archi-
tecture ends with a dense layer having 10 outputs, each
corresponding to one of the labels. For each evolutionary
algorithm, we also experiment with two variants of the
architecture – one with dropout [11], and one without
dropout.

Each CNN architecture is evaluated by training it
for 10 epochs on the training data, and then using its
accuracy on the validation data as the fitness. We use
an ADAM optimizer [12] with categorical cross-entropy
loss. The final CNN architecture is then tested on the
test data, and the accuracy is the main metric used to
compare the different algorithms.

IV. RESULTS

The accuracies obtained on the CIFAR-10 dataset for
each method that we tested are shown below in the table
below.

Method Accuracy
GEP with Crossover Mutation 73.16%

GEP with Crossover Mutation and Dropout 78.62%
GEP with (1 + 2) EA 78.18%

GEP with (1 + 2) EA and Dropout 80.97%
CGP-CNN 75.22%

In Figure 4, we see that for both genetic algorithms,
adding Dropout starkly increases performance. Due to
the computational burden associated with CGP CNN,
we could not obtain enough information to confidently
conclude if our proposed algorithms performed better.
However, initial evidence does suggest our algorithms
perform at least competitively with CGP CNN despite
having lesser flexibility and a more simplified architec-
ture.

Fig. 4. Maximum accuracy across various algorithms.

V. FUTURE WORK

Although we got some promising initial results, there
are a lot of places that can see improvement. Firstly, we
were not able to implement the CGP algorithm to its
full extent due to computational problems. For example,
we trained CNN architectures for 40 epochs in the CGP
algorithm as opposed to the 50 that the authors used. We
were also only able to run the algorithm for 9 generations
as opposed to the 100 that the authors used. As a result,
we were not able to recreate the baseline performance
of 93.25% stated in [5].

There is also a lot of room for improvement in the
GEP algorithm. As with CGP, we were only able to train
each architecture for 10 epochs and run the algorithm
for less than 30 generations. We have so far only used
two kinds of layers. Our future work could focus on
integrating more highly functional blocks like the CGP
algorithm. We also plan to experiment with different
values of λ in the evolutionary strategy. Moreover, the
function set for GEP is currently restricted to just {∩,∪}.
It might be worthwhile to investigate how using some
more sophisticated ways to combine layers can improve
our performance.

Overall, GEP proves to be a promising avenue of
methods for designing CNN architectures, and with the
right tuning of parameters, can provide a robust and
flexible way of finding near-optimal CNN architectures
for a variety of tasks.

REFERENCES

[1] Y. Bengio, “Gradient-based optimization of hyperparameters,”
Neural Computation, vol. 12, no. 8, pp. 1889–1900, 2000.

[2] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” Journal of Machine Learning Research, vol. 13,
no. 10, pp. 281–305, 2012.



[3] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances in
Neural Information Processing Systems (F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, eds.), vol. 25, Curran Associates,
Inc., 2012.

[4] J. D. Schaffer, L. D. Whitley, and L. J. Eshelman, “Combina-
tions of genetic algorithms and neural networks: a survey of
the state of the art,” [Proceedings] COGANN-92: International
Workshop on Combinations of Genetic Algorithms and Neural
Networks, pp. 1–37, 1992.

[5] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic pro-
gramming approach to designing convolutional neural network
architectures,” in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, (New York, NY, USA),
p. 497–504, Association for Computing Machinery, 2017.

[6] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” 2001.

[7] D. Song, X. Yuan, Q. Li, J. Zhang, M. Sun, X. Fu, and L. Yang,
“Intrusion detection model using gene expression programming
to optimize parameters of convolutional neural network for
energy internet,” Applied Soft Computing, vol. 134, p. 109960,
2023.

[8] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of
features from tiny images,” 2009.

[9] T. Jansen, K. A. D. Jong, and I. Wegener, “On the Choice
of the Offspring Population Size in Evolutionary Algorithms,”
Evolutionary Computation, vol. 13, pp. 413–440, 12 2005.

[10] B. Doerr, C. Gießen, C. Witt, and J. Yang, “The (1+λ) evo-
lutionary algorithm with self-adjusting mutation rate,” CoRR,
vol. abs/1704.02191, 2017.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Re-
search, vol. 15, no. 56, pp. 1929–1958, 2014.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2017.


	Introduction & Related Work
	Problem Set-Up
	Methodology
	Gene Expression Programming
	Gene Encoding and Decoding
	Genetic Algorithm

	Cartesian Genetic Programming
	Parameter Settings and Evaluation for GEP

	Results
	Future Work
	References

