
Digital Signal Processing

Ishan Kapnadak
190070028

Undergraduate, Department of Electrical Engineering
Indian Institute of Technology, Bombay

ABSTRACT
A short report on a few important topics in Digital Signal Processing and
their applications. Adapted from lectures delivered by Prof Vikram M

Gadre on the course EE603, in the Autumn of 2009.

Contents

1. Introduction 3

2. The Fourier Transform 3

2.1. Representing Signals 3

2.2. Introducing the Fourier Series 3

2.3. From Periodic to Aperiodic : The Fourier Transform 5

2.4. Why Sine Waves? 5

3. Sampling 6

3.1. What exactly is Sampling? 6

3.2. More about sampling and the Nyquist Principle 6

3.3. The Wagon Wheel Effect 9

3.4. Introducing Complex Exponentials and Phasors 9

3.5. Sampling with Phasors 11

3.6. Normalised Frequency 11

4. Discrete Systems and Linear Shift-Invariant Systems 12

4.1. What is a discrete system? 12

4.2. Linearity 12

4.3. Shift Invariance 14

4.4. Unit Impulse Response and Convolution 14

4.5. Stability and the Frequency Response 16

4.6. Causality 18

5. Domains and Transforms 20

5.1. Sequences as Vectors 20

5.2. The Discrete Time Fourier Transform 21

5.2.1 Introduction . 21
5.2.2 Constructing the Inverse DTFT . 21
5.2.3 Some Properties of the DTFT . 22
5.2.4 Spectral Energy Density and Parseval’s Theorem for sequences 25

1

Digital Signal Processing -Ishan Kapnadak

5.3. The Z Transform 25

5.3.1 Introduction . 25

5.3.2 Properties of the Z transform . 27

5.3.3 Poles, Zeroes and calculating Inverse Z Transforms 29

5.3.4 Eigensequences and the System Function . 30

5.3.5 System Properties - Causality and Stability . 31

6. Signal Flow Graph and System Realisations 32

6.1. The Direct Form I Graph 32

6.2. The Direct Form II Graph 35

6.3. Cascade and Parallel Decomposition 38

6.4. Difference Equations 40

7. Synthesis of Discrete-Time Systems 43

7.1. The Ideal Filter 43

7.2. Specifications of a Real Filter 44

7.3. The Bilinear Transform 46

7.4. Design Strategy and Low-Pass Filter Design 47

7.5. The Butterworth Filter 48

7.6. The Chebyshev Filter 50

7.6.1 Chebyshev Polynomials . 50

7.6.2 Designing the Chebyshev Filter . 51

7.7. Analog Frequency Transformations 53

7.8. High Pass Filter 53

7.9. Bandpass Filter 54

7.10. Bandstop Filter 55

8. Finite Impulse Response Filter Design 56

8.1. Linear Phase Response 56

8.2. Truncation and Windowing 57

8.3. The Kaiser Window 61

8.4. Lattice Structures 63

8.4.1 The Lattice Equations . 63

8.4.2 Realising FIR Systems via a Lattice Structure 64

8.4.3 Generalising to IIR Systems . 66

9. The Discrete Fourier Transform 69

9.1. Discretising the Frequency Axis 69

9.2. Formulating the Discrete Fourier Transform 70

9.3. Convolution and Circular Convolution 70

10. The Fast Fourier Transform Algorithm 72

10.1. Formulating the FFT Algorithm 72

10.2. Computational Complexity 74

10.3. Computing Convolutions using the FFT Algorithm 75

10.4. Generalised FFT Algorithm for composite N 76

References 76

2

Digital Signal Processing -Ishan Kapnadak

1. Introduction

This report is simply a documentation of the course EE603 offered by Prof. Vikram M Gadre in
the Autumn of 2009. I have written these notes formally as it helps me deepen my own understanding
and makes it easier for me to look up/recollect things later. It would also be my pleasure if these
notes help someone else in understanding or developing a liking for this beautiful subject. I hope
these notes provide a wholesome and enjoyable experience to anyone reading them. This report is only
meant to be a brief introduction to the vast field of Digital Signal Processing and is not meant to be a
comprehensive, stand-alone text. I would recommend referring to textbooks (Oppenheim and Schafer
is a classic) if you wish to have a look at some of the more rigorous analyses or examples. Enjoy !

2. The Fourier Transform

2.1. Representing Signals

We use signals in our day-to-day life to communicate, and to exchange information. These signals arise
as streams of data from the real world - be it in the form of images, sound waves, temperature and so
on. The field of Digital Signal Processing deals with how to manipulate and analyse these signals in
their digital form. The processes of image enhancement, speech recognition, compression and storage
of data - all have their roots in Digital Signal Processing. To understand the field of signal processing,
we must first understand signals - and how to represent them.

We encounter a variety of signals around us. Perhaps a regular sinusoidal signal, x(t) = A sin(ωt+φ),
or something more complicated, such as x(t) = A sin(ωt+ φ)e−γt. They could be even more abstract,
such as a signal x(t) that takes the value 1 when it is between 6 A.M and 6 P.M on a particular
day, and 0 otherwise.Here is where our problem starts. We do not want to analyse all these different
classes of signals differently. Can we devise a method by which we can analyse all these signals in the
same manner? Or let me put it this way. Can all these signals be represented in a similar manner?
What we essentially want to find is a “fundamental unit” of these signals. That is, we want to find a
mathematical object that can efficiently describe all these signals. What this allows us to do is this:
Once we have found our unit, we can shift our focus to only this unit. By analysing this single unit,
we have essentially analysed every signal (since, any signal would be made up of chunks of this unit).

The answer to all these questions is Yes. We can, in fact, find such a unit for signals. What we have
described above is essentially a series expansion of a function. For example, we have the Taylor series,
which expands a function about a point x = a in terms of polynomials of the form (x − a)i, with
appropriate coefficients or weights multiplied with each term. This is done as follows :

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n

where f (n)(a) is the nth derivative of f at a. We also have the Maclaurin series, the Laurent series.
But what we wish to focus on, is the Fourier Series.

2.2. Introducing the Fourier Series

The Fourier Series expands a function in terms of sinusoids. It allows us to express signals as linear
combinations of various sine waves. However, the important question to ask at this point is “When
can we do this?”.

This brings us to the Dirichlet Conditions which are a set of sufficient conditions for a real-valued
periodic function, f , to equal to the sum of its Fourier series. These conditions are:

1. f must be absolutely integrable over a period

2. f must be of bounded variation in any given bounded interval

3

Digital Signal Processing -Ishan Kapnadak

3. f must have a finite number of discontinuities and these discontinuities cannot be infinite.

I shall not go too much into the Dirichlet conditions. What these conditions basically outline is that
our function/signal of interest must be a “reasonable” signal. That is, it must be largely continuous
and can have discontinuities only at sets of isolated points.

Figure 1: A random signal of width ’T ’

Consider the signal shown in Figure 1. This signal repeats after every interval of T seconds. Now
let us say we wish to express this signal as a linear combination of sine waves. As this signal has a
time period of T , the very first component we must pick is a sine wave whose time period is T , that
is, whose frequency f0 = 1

T . Evidently, a sine wave of frequency f0 doesn’t give us our signal back.
We must add a few more sine waves. The next in the series of sine waves will be the one with time
period T

2 or with frequency 2f0. However, we may still not have a linear combination of these two sine

waves which gives us back our original signal. We then add a sine wave of time period T
3 or frequency

3f0. Once we continue this way, we see that to represent this signal, we must add all sine waves whose
frequency is of the form f = nf0, where n = 1, 2, 3 However, this may still not give us our signal. If
we observe closely, the average value of our signal over the interval T , isn’t zero. But if we average out
our linear combination of sine waves, we will get zero! To correct this, we must also add a sine wave
of zero frequency. A constant. Finally, this gives us our original signal. Note that each component in
our linear combination has an associated multiplying factor, or its “weight”. This weight gives us the
contribution of the corresponding sine wave to our signal. Thus, our signal can be represented as :

x(t) =

∞∑
i=0

(Ai cos(2πif0t) +Bi sin(2πif0t))

where Ai and Bi are the coefficients associated with the sine wave having frequency if0. This, is the
Fourier Series of the given signal. We need two coefficients Ai and Bi to represent our signal. This
is because we also need to account for the phases of our sine waves. In simpler terms, we need to make
sure that our linear combination and original signal have the same reference for t = 0. This can be
done by translation of our cosines forward or backward by a certain amount. This is exactly what’s
being done by the sine. However, this is a cumbersome notation. Using elementary trigonometric
identities, we can represent this in a much neater manner as follows :

x(t) =

∞∑
i=0

Ai cos(2πif0t+ φi)

where Ai is the weight of the frequency if0 and φi represents the relative phase of the frequency if0.
We shall be using this notation henceforth.

The above representation is indeed, nice. But the signal we have picked here is also a particularly
‘nice’ signal. It doesn’t have any discontinuities and is infinitely differentiable everywhere. But what
about signals having discontinuities at certain points. As we saw, the Dirichlet conditions still allow
us to to express such signals in terms of sine waves. But any linear combination of sine waves would
be continuous and in fact, infinitely differentiable. How, then, can this linear combination be equal to
our original, discontinuous signal. The idea is that here we relax our definition of convergence. Even

4

Digital Signal Processing -Ishan Kapnadak

for such signals, the linear combination of sine waves converges at all points where the function is
continuous, and at the points of discontinuity, it converges to a value which is the average of the values
at the two endpoints. Such a linear combination still largely retains the properties of the signals and we
say that it converges ‘almost everywhere’ to the original signal. As long as the points of discontinuity
are isolated, they won’t cause us much trouble.

Here, we introduce the concept of a frequency axis. A nice way to represent the set of coefficients Ai is
to consider the frequency to be our variable of interest, i.e, we shall have a mapping between the sets
of frequencies nf0 and the sets of coefficients Ai. We could then represent this mapping graphically in
the frequency domain. Our x-axis represents frequency and y-axis represents the weights or coefficients
associated with these frequencies. At the points x = if0, the y co-ordinate is equal to Ai. A similar
plot can also be drawn for the coefficients φi.

2.3. From Periodic to Aperiodic : The Fourier Transform

So far, we have only considered a periodic signal. But what if our signal was aperiodic? How would we
then represent it as a linear combination of sine waves? A nice way to do this is as follows: Consider
that in Figure 1, we make T larger and larger. The gap between consecutive frequencies ∆ = 1

T would
become smaller and smaller. To represent an aperiodic signal, we need T → ∞ and consequently,
∆→ 0. Hence, from a countably infinite set of frequencies, we reach a continuum of frequencies. The
associated summation is then replaced by an integral. The sequences Ai and φi become functions A(f)
and φ(f). Thus, our signal can be represented as :

x(t) =

∫ ∞
0

A(f) · cos(2πft+ φ(f))df

The ‘amplitude’ function A(f) is commonly known as the Fourier Transform of x(t). The above
equation represents the Inverse Fourier Transform of A(f) (or the representation of x(t) in terms
of sinusoids.

2.4. Why Sine Waves?

Before we move onto Sampling, I would like to make a few points about why we chose the sinusoids as
our building blocks. An important point to note is that sinusoids behave the same way regardless of
their frequencies. Thus our treatment of one sinusoid applies equally well to all sinusoids. This is what
makes the decomposition into sinusoids so powerful. We can treat every unit the same way and hence
it is sufficient to analyse only one of them. In contrast, consider the Taylor series. Here, the units are
polynomials in x. These most certainly do not behave in the same way. If we have treated x in one
way, we still have to treat x2 in a completely different way, making our search for units pointless. The
fact that we can expect similar results from the same operation on each sinusoid is what makes the
sinusoids a powerful foundation for us.

Taking a bit of inspiration from linear algebra, what we have essentially done is an orthogonal
decomposition of our signal. If we take the set of cosines to be our basis, then we have simply
represented our signal as a linear combination of the basis elements. Particularly, the interesting
property is that the set of cosines form an orthogonal basis. That is the inner product of any two
cosines is zero if their frequencies are distinct and non-zero only when their frequencies are equal.
Additionally, we could also normalise this set of cosines to make the non-zero inner product equal to
1. This way, we end up with a peculiar factor of 1√

2π
in our Fourier transform. The important point to

note here is that orthogonality makes it extremely easy for us to find the coefficients Ai and Bi for a
signal. All we need to do to is take the inner product of our signal (and hence, our linear combination)
with the sine and cosine of our frequency of interest. This would make all inner-products equal to zero
except for the sine/cosine of this frequency (this becomes 1 if our basis is normalised). Hence, this
gives us the coefficient corresponding to this frequency. Thus, the Fourier transform is especially easy
to compute.

5

Digital Signal Processing -Ishan Kapnadak

3. Sampling

3.1. What exactly is Sampling?

Now that we have a good idea about representing signals, we move on to the process of sampling.
The process of sampling is a bridge between the domains of continuous-time signals and discrete-time
signals. When we sample a signal, what we are essentially doing is capturing the value of the signal at
particular instants only, and reconstructing the original signal from these samples. An example where
sampling is used is audio recordings. Sound is produced as continuous waveforms. However, the storage
of these waveforms as continuous signals takes up too much space. This is where sampling comes in.
In audio recordings, we do not keep track of the audio signal at all times. Instead, we only sample
it at regular instants and store only these samples. We then use these set of samples to reconstruct
the original sound waveform. In a sense, we have discretised sound. If we have a continuous-time
signal x(t), its sampled signal would be the value of the continuous-time signal at particular instants
(sampling instants) and zero everywhere else. Thus a sampled signal is essentially a train of pulses.
However this is the picture of only idealised sampling. In reality, we cannot take pin-point snapshots
in time and our snapshots tend to smear a bit about the sampling instants. Figure 2 depicts a more
realistic picture of what sampling looks like.

Figure 2: Figure 2: A realistic picture of sampling

Our objective is to recreate the signal, or obtain x(t) from xs(t). It is not intuitive at this point that
we can actually be able to do this. How is it that we only know the value of our signal at a few
points yet we are able to completely describe it? And if it is indeed possible to carry out this process,
how often must one know the value of our signal to exactly reconstruct it? Before we answer these
questions, let us first talk a bit about the process of sampling.

3.2. More about sampling and the Nyquist Principle

I would like to point out that sampling is a linear process. Let’s say I have two signals x1(t) and
x2(t). When I sample these two signals separately, I get the samples y1[n] and y2[n] (where n is the
sampling number, as shall be explained later). Now lets say I wish to sample a linear combination
α1x1(t)+α2x2(t) of the original signals. The corresponding samples I will get for this linear combination
will be α1y1[n]+α2y2[n]. This is fairly intuitive as our signals themselves obey the law of superposition.
We shall exploit this linearity by invoking the Fourier representation of a signal. In the previous chapter,
we saw that any signal could be broken down as a sum of ’shifted’ cosines. Thus, to focus on sampling
any general signal, we focus on the sampling of a single sine wave.

6

Digital Signal Processing -Ishan Kapnadak

Consider the sinusoid x(t) = A cos(2πft+φ). We wish to sample this signal and eventually reconstruct
it from these samples. Consider that we sample this is signal at regular intervals of Ts. In this case,
Ts is the sampling interval and fs = 1/Ts is the sampling frequency. Our samples will be the value of
x(t) at the instants t = nTs for n ∈ W. Here n is the sampling number, which tells us which sample
are we currently looking at. Thus, our samples are :

y[n] = A cos(2πfnTs + φ)

Now our objective is this : given these samples, can we obtain the signal x(t) = A cos(2πft + φ) ?
And if so, when? At first, it may seem that the problem with the sampling is that we cannot find a
function which satisfies these samples. However, this is not true. The problem is that we have too many
functions which can satisfy these samples. For example, consider the samples y[n] = A cos(2πfnTs+φ)
It is definitely not certain that these samples came from the signal x(t) = A cos(2πft+ φ). We could
very well choose our function to be made up of the line segments connecting two consecutive samples.
This function could’ve also led to these samples, with equal merit. But we wish to talk about only
sinusoids (as we are interested only in samples from sinusoids, having decomposed signals in terms of
sinusoids). The problem is that even when we restrict ourselves only to sinusoids, there are still many
sinusoids which will satisfy these samples and in fact, infinitely many such sinusoids. This poses a big
problem. For any set of samples, we have infinitely many sinusoids which may have produced them.
How do we know which is the correct sinusoid? This is the objective of reconstruction.

To treat this problem of many sinusoids, we must first have an idea about why this non-uniqueness
arises. Quite remarkably, this non-uniqueness arises because of the following two elementary trigono-
metric identities :

cos(β) = cos(−β)

cos(2πk + β) = cos(β) ∀ k ∈ I

Thus, we can alternatively express represent cos(β) as cos(2πk ± β) for all integer k, thus creating
infinite possible representations of the same cosine. Now let us apply this to our samples. Our samples
can be thus be represented as

y[n] = A cos(2πfnTs + φ) = A cos(2πkn± 2πnfTs ± φ)

This can be further simplified to :

y[n] = A cos(2πnTs(
k

Ts
± f)± φ) = A cos(2πnTs(kfs ± f)± φ)

This representation says a lot! By separating out 2πnTs, we have found out the frequencies of the
misleading sinusoids. For example, the samples could’ve been produced by the sinusoid having fre-
quency fs + f and phase +φ as well as by the sinusoid having frequency fs − f and phase −φ (for
k = 1). Or perhaps the sinusoid with frequency 2fs + f and phase +φ or the sinusoid with frequency
2fs − f and phase −φ (for k = 2). Thus, we have generated all the sinusoids which could’ve produced
our samples. This can be explained as follows : in the expression y[n] = A cos(2πnTs(kfs ± f) ± φ),
k represents the number of cycles lost by the sinusoid before reaching our sample point. That is, the
sinusoid with frequency fs+f completes one cycle before it reaches our sample point, while the sinusoid
with frequency 2fs + f completes two cycles before it reaches our sample point. Unsurprisingly, the
sinusoids with higher k, have a higher frequency and thus complete a larger number of cycles between
two sampling instants. Now, the sign of the phase tells us whether the sinusoid in question reaches
our sampling point at its rising edge or falling edge. The sinusoids having same phase (i.e +φ) as our
original signal pass through the sampling point on the same edge as the original sinusoid, while the
sinusoids having opposite phase (i.e −φ) pass through the sampling point on the opposite edge.

This process of creation of multiple copies of sinusoids producing the same samples is known as Alias-
ing and the copies of sinusoids produced are called aliases. The term ‘alias’ refers to a false identity
or a false persona. It is thus fitting to label these copies of sinusoids as aliases. The sinusoids with

7

Digital Signal Processing -Ishan Kapnadak

higher frequencies put on a false identity and masquerade as our original sinusoid by producing the
same samples as the original signal. If we were to plot all these frequencies on the frequency axis, then
we will have points corresponding to the frequencies : f, fs − f, fs + f, 2fs − f, 2fs + f

We see that these aliases cause us a problem. Right now, we cannot tell which is the correct sinusoid.
The discrete-time version of our signals (namely, the samples) has infinitely many continuous-time
identities (namely, the aliases). What our process of reconstruction must do is filter out these aliases
and pick the sinusoid of the correct frequency.

First, we consider the definition of a band-limited signal. A band-limited signal is once whose com-
ponent frequencies are bounded above, i.e, a band-limited signal has no contribution from frequencies
higher than a certain frequency fm (the amplitude of its Fourier transform is zero for all frequencies
greater than fm). fm is the maximum frequency present in the signal. We now consider aliases of this
band-limited signal. Our band-limited signal has frequencies in the range 0 to fm. This is called the
spectrum of our band-limited signal. Aliasing will simply copy and paste this spectrum at all multiples
of fs and also paste this spectrum in reverse (or mirror it) at all multiples of fs. Thus, the first alias
of our band-limited signal will occupy the spectrum fs − fm to fs. The second alias will occupy the
spectrum fs to fs + fm. The third will occupy the spectrum 2fs − fm to 2fs and so on. If we are to
ensure that we can reconstruct our signal from the samples, we must ensure that none of the aliases
interfere with our original spectrum, i.e, the aliases do not pollute our original spectrum. For this to
hold true, there should be no overlap of the original spectrum with any of the alias spectra. Evidently,
our trouble is restricted to only the first alias. Once we have made sure that the first alias doesn’t
interfere with our signal, we have made sure that none of the aliases will. This is because all other
aliases occupy bands which are farther away from our original spectrum. The minimum frequency
contained in the spectrum of the first alias is fs−fm. To make sure that this spectrum doesn’t overlap
with our original spectrum, we must have that the point corresponding to the frequency fs − fm lies
to the right of the point corresponding to the frequency fm in our original spectrum. Thus we get that
fs − fm ≥ fm, or :

Theorem 3.2.1.

fs ≥ 2fm

This important result is known as the Nyquist Principle or the Nyquist-Shannon Sampling
Theorem. This equation gives us the criterion we have been looking for. This is not a formal proof
of the Nyquist principle, rather a simple and intuitive explanation for the same. However, we can add
rigour to this very idea to formally prove the Nyquist principle.

Let us now talk about a few points about what the Nyquist principle really tells us. The Nyquist
principle tells us is that if my sampling frequency is greater than or equal to twice the maximum
frequency present in my signal, then I can successfully reconstruct my signal from the samples taken.
Note that the Nyquist principle does not tell us that aliases won’t be created if fs ≥ 2fm. Aliases will
still be created. What this principle tells us is that even though these aliases are created, they won’t
pollute our original spectrum if our sampling satisfies the Nyquist criterion. In other words, once we
have ensured that fs ≥ 2fm, we have ensured that there is no intruder in our original spectrum, i.e,
our original spectrum has not been distorted by aliases. It is now easy to see that we can obtain the
true signal by keeping with us only the frequencies upto fm. As the spectrum upto fm is the true
spectrum of our signal, filtering out all frequencies above fm will give us back our true signal. This
can be easily done with the help of a Low Pass Filter.

The Nyquist principle basically tells us that to successfully reconstruct our signal, we must sample it
atleast twice per cycle. But, it is also possible that we may not be able to reconstruct our signal if
we sample it exactly two times. For example, consider the sinusoid x(t) = A cos(2πft). Consider that
we sample this signal at all the points t = n

2f for integer n. We still have exactly two samples per
cycle but all our samples turn out to be zero! We have lost all information about our signal simply
because we sampled it at the wrong instants. This problem only arises for the case fs = 2fm (or
the perfect sampling case). This won’t happen if we sample it at a frequency fs > 2fm. Hence, it is
always safer to sample at a frequency sufficiently higher than 2fm. For example, audio signals (which

8

Digital Signal Processing -Ishan Kapnadak

have a maximum frequency of 20 kHz) are usually sampled at 44 kHz, which is an entire 4 kHz higher
than the minimum sampling frequency provided by the Nyquist principle. Before we move on, let us
consider an interesting effect of incorrect sampling, which arises due to aliasing.

3.3. The Wagon Wheel Effect

How often have we observed wheels turning backwards in films? This can actually be elegantly ex-
plained by aliasing. The films we view are actually a rapid display of separate images (or frames).
Most films have a rate of 24 fps (frames per second). These frames are basically our samples and 24
fps is our sampling rate. The Nyquist principle tells us that the alias spectrum will overlap with the
true spectrum if the maximum frequency is greater than fs

2 or 12 fps. Thus, we’ll be able to see the
negative effects of aliasing if there are any transitions in our film which are faster than 12 fps. This is
commonly seen in rotating wheels.

Consider a wheel with 8 spokes. Now, let’s say that the wheel is rotating at 2 revolutions per second.
Now, the number of spokes it’ll move forward by in one second will be given as :

2(rps)× 8(spokes/revolution)

24fps
= 0.67spokes/frame

Thus, in one frame, the wheel moves forward by approximately 67 % of the angular distance between
two spokes. However, when viewing these two frames consecutively, this is perceived by the human eye
as the wheel moving backward by 33 %. Thus, we get the illusion that the wheel is actually moving
backward. The apparent speed of the backward motion can also be calculated as follows :

ωapparent =
24fps× 0.33(spokes/frame)

8(spokes/revolution)
= 1rps

Thus, the wheel actually appears to move backward with a speed of 1 rps. The Nyquist principle gives
us a really nice explanation for this phenomenon. If in two successive frames, the spokes move by more
than 50 % of the angular distance, it actually appears to us as if the next spoke has moved backward.
To resolve this, we must make sure that we sample fast enough so that the angular distance covered in
two consecutive frames is less than 50 % of the total angular distance between two spokes. This again
leads us back to the Nyquist principle. Hence, in the problem above, if the wheels rotate at a speed
less than 1.5 rps, we will not face this problem of the wheels moving backward (as the spokes cover
less than 50 % of the angular distance as can be easily calculated). An interesting thing happens if we
make the wheels rotate at 3 rps. The percentage of angular distance covered will thus be :

3(rps)× 8(spokes/revolution)

24fps
= 1spoke/frame

This is a really interesting result. In one frame, each spoke covers 100 % of the angular distance. Thus,
each spoke moves to the position of the next one. However, our eyes cannot tell apart one spoke from
another. Hence what appears is that the wheel actually remains stationary. This is quite uncommon
though as we need to be quite lucky to hit this sweet spot.

3.4. Introducing Complex Exponentials and Phasors

We have now analysed sampling in a fair amount of depth. Before we proceed further, I would like to
introduce some ideas about the representation of sinusoids themselves. Consider our good old sinusoid
A cos(ωt + φ). We will often see that most systems modify this sinusoid in a combination of the
following two ways :

1. Modifying the amplitude

2. Modifying the phase

9

Digital Signal Processing -Ishan Kapnadak

Let us first consider modifying the amplitude only. Our sinusoid A cos(ωt+φ) is transformed into the
new sinusoid A1 cos(ωt+ φ). This new sinusoid can also be represented as:

A1 cos(ωt+ φ) =
A1

A
×A cos(ωt+ φ)

Thus, an amplitude change is simply performed by the multiplication of the factor A1

A . This is a
convenient way to represent amplitude changes. Now we consider modifying the phase only. Our
sinusoid A cos(ωt + φ) is transformed into the sinusoid A cos(ωt + φ1). But, when we look for an
analogous multiplication factor, we run into trouble. It isn’t possible for us to simply multiply the
sinusoid A cos(ωt + φ) with a constant and get the sinusoid A cos(ωt + φ1). This makes it very
inconvenient for us to handle phase changes in sinusoids. We now wish to replace the sine with a
function that allows us to conveniently handle both phase changes and amplitude changes. Note:
while making phase changes convenient to handle, we must still retain the convenience with amplitude
changes. To do this, we move into the realm of complex numbers.

Consider a complex number z = Aej(ωt+φ) where j is the square root of minus one (j =
√
−1). This is

the polar form of z. z can also be represented in its rectangular form as z = A cos(ωt+φ)+jA sin(ωt+
φ). The real and imaginary parts of z are <(z) = A cos(ωt+φ) and =(z) = A sin(ωt+φ). respectively.
We also consider the complex conjugate of z, z̄ = Ae−j(ωt+φ) = A cos(ωt+ φ)− jA sin(ωt+ φ). Now,
when we average these two complex numbers, we get :

1

2
(z + z̄) =

Aej(ωt+φ) +Ae−j(ωt+φ)

2
= A cos(ωt+ φ)

This is the representation of sinusoid we have been looking for, i.e, A cos(ωt + φ) = 1
2 (Aej(ωt+φ) +

Ae−j(ωt+φ)). To give a bit of intuition, the complex exponential Aej(ωt+φ) is the complex number
of magnitude A, having initial phase φ and rotating with an angular speed of ω in the anticlockwise
direction. Its complex conjugate is simply its mirror image, i.e, the complex number with magnitude
A, having initial phase −φ and rotating with an angular speed of ω in the clockwise direction. The
sinusoid A cos(ωt+ φ) is then the average of the projections of the two complex exponentials onto the
real axis in the Argand plane.

Now let us see if our complex exponential gives us a multiplicative factor for phase change. Consider the
complex exponential Aej(ωt+φ). We wish to transform this into the complex exponential Aej(ωt+φ1).
But, we can represent this new exponential as :

Aej(ωt+φ1) = Aej(ωt+φ) × ej(φ1−φ)

Thus we have represented a phase shift via multiplication. The factor ej(φ1−φ) is the multiplicative
factor. The important point to note is that this representation still allows us to represent amplitude
changes by multiplication of the same factor A1

A . More conveniently, any arbitrary transformation from

Aej(ωt+φ) to A1e
j(ωt+φ1) can be achieved by multiplying with the factor A1

A e
j(φ1−φ). Note: to represent

the same change in the sinusoid A cos(ωt+φ), we must make changes to both the complex exponentials
making up the sinusoid. While they have the same amplitude factor, their phase factors are mirror
images of each other. For example, we saw that we must multiply the first complex exponential with
the factor ej(φ1−φ), the second one must be multiplied by the factor e−j(φ1−φ). This ensures that the
components still remain mirror images after the transformation.

Now that we have introduced this representation of sinusoids, we’ll go one step further and introduce
the concept of phasors (or phase vectors). We considered A cos(ωt + φ) to be the average of
two rotating complex numbers, Aej(ωt+φ) and Ae−j(ωt+φ). The phasor is simply the term Aejφ or
Ae−jφ. These terms can also be considered as the complex amplitudes associated with the frequencies
ω and −ω. We see that the concept of phasors also introduces us to negative frequencies. A negative
frequency simply means that the associated complex number is rotating in the clockwise (or negative)
direction. The phasor Aejφ can also be represented as A∠φ. Using phasors, we can say that the
sinusoid A cos(ωt+ φ) is the average of the phasors A∠φ and A∠− φ associated with the frequencies
ω and −ω respectively. For real signals, we see that the magnitude is an even function of frequency

10

Digital Signal Processing -Ishan Kapnadak

and phase is an odd function of frequency. Henceforth, we will consider signals to be combinations of
phasors .

3.5. Sampling with Phasors

We now look back at our problem of sampling using phasors. We consider the same signal, occupying
a band between the frequencies 0 to fm. For each frequency f , we will have phasors created at the
frequencies f and −f . Thus, in terms of phasors, our signal occupies the spectrum from −fm to fm.
Aliasing will still occur the same way, but the only difference is that aliases will also be created for
negative frequencies. For example, the alias corresponding to the frequency fs − fm will be resolved
into phasors associated with the two frequencies fs− fm (positive) and −fs + fm (negative). The rest
of the treatment remains the same.

3.6. Normalised Frequency

We now describe what is called the process of normalisation. In normalisation, we change our units to
make the sampling frequency as our unit angular frequency. This makes fs = 2π. All other frequencies
are now represented in terms of this new unit. Our new notion of frequency (or normalised frequency)
is defined as the ratio of the actual frequency to the sampling frequency. We use these normalised
frequencies to construct a normalised frequency axis. The sampling frequency fs occupies the points
2π and −2π (in phasors). If our signal obeys the Nyquist principle, then it occupies the spectrum −π
to π. The spectrum of our signal is unique only in this region. This spectrum between −π and π is
copied and pasted at all multiples of 2π. These are the alias spectra.

We have described normalised frequencies, but why do we need them? Normalised frequency adds a
sense of abstraction to our process of sampling. The idea is that we want to use the same principle of
sampling for any given sampling frequency. We don’t want to treat sampling any differently for two
different physical situations. Normalisation allows us to ignore the physical situation we are dealing
with and allows us to treat these situations the same way. It allows us to use a common philosophy
for all scenarios.

11

Digital Signal Processing -Ishan Kapnadak

4. Discrete Systems and Linear Shift-Invariant Systems

4.1. What is a discrete system?

After talking about sampling, we now move on to systems which process such samples or digital signals.
These are called discrete systems.

Definition 4.1.1. A discrete system is one which takes in a sampled input and gives out a sampled
output. Schematically :

x[n] Discrete System y[n]

Here x[n] is our sampled input and y[n] is our sampled output. The square brackets around n
indicate that this is a discrete signal or a sequence. n is the sampling number. Before we go on, it is
interesting to note that there is some equivalence between a discrete system and an analog system
having the same function. Consider that we send an input x(t) through an analog system which gives
us the output y(t). The output y(t) can also be obtained in this way : We first sample the input
x(t) according to the Nyquist principle to get the sampled input x[n]. We the pass this sampled
input through an equivalent discrete system which gives us the sampled output y[n]. Now, when we
reconstruct the output signal from the samples y[n], we get back the analog output y(t). This can be
depicted in a neat way as follows :

Analog Input, x(t) Analog System Analog Output, y(t)

Discrete Input, x[n] Discrete System Discrete Output, y[n]

Sampled Reconstructed

A discrete system is described by the relationship between x[n] and y[n]. It can be considered as a
mapping from one sequence to another. A sequence itself can itself be considered as a mapping from
Z → C. It takes in an integer n (the sampling number) and gives a complex output. So a discrete
system is a relation between two such sequences. Note that the relation need not be a direct correlation
between x[n] and y[n], i.e y[n] need not be related to x[n]. It can also be related to x[n−1] or x[n−2].
It need not be a point-to-point relation either. It can also be related to multiple samples, such as
y[n] = x[n] + x[n − 1]. An example of this is a system which accumulates its inputs. This will be
defined as :

y[n] =

n∑
i=−∞

x[i]

A system in which y[n] is related only to x[n] is called a memoryless system. This is because the
system does not keep track of its previous inputs and is only connected to the current input.

4.2. Linearity

Now that we have a good idea of what a discrete system is, we talk about what we require from discrete
systems which are relevant to us. The basic requirement is that our system must treat frequencies

12

Digital Signal Processing -Ishan Kapnadak

independently. If we give our system an input phasor of certain frequency, our output must be a phasor
of the same frequency. This is important because when we take a combination of phasors and put it
into our system, we must ensure that the action of our system on one frequency doesn’t affect another
frequency. For memoryless systems, it is easy to see that the only system which obeys these properties
is the linear system y[n] = k × x[n] for some complex k. If we give it an input x[n] = Aej(ωn+φ) we
get the output y[n] = k × Aej(ωn+φ) which can be written as A1e

j(ωn+φ1) for some A1, φ1. Thus our
output y[n] also has the same frequency ω.

Consider however the system y[n] = x2[n]. This is a non-linear system and does not obey our re-
quirement. If we give it an input x[n] = Aej(ωn+φ) we get the output y[n] = A2ej(2ωn+2φ), which
has double the frequency of our input. Essentially, we want our system to obey what is called the
principle of superposition. The principle of superposition tells us that if I send two signals x1[n]
and x2[n] through a system to get the outputs y1[n] and y2[n] respectively, then on sending a linear
combination αx1[n]+βx2[n] through the system, I should get the output αy1[n]+βy2[n] corresponding
to the same linear combination α, β. Mathematically, for any two sequences x1[n] and x2[n] :

f(x1[n]) = y1[n], f(x2[n]) = y2[n] =⇒ f(αx1[n] + βx2[n]) = αy1[n] + βy2[n], ∀ α, β ∈ C.

A system that obeys this property or obeys the principle of superposition is called a linear system.
To illustrate certain properties about linearity, we take two examples.

First, consider the system y[n] = =(x[n]), the imaginary part of x[n]. Although this system appears
to be linear at first, it actually isn’t. The problem arises when we consider complex constants while
taking linear combinations. For example, consider x1[n] = 1 and x2[n] = 1, two constant sequences.
Now, y1[n] = 0 and y2[n] = 0. Consider, however the linear combination x[n] = x1[n] + jx2[n] = 1 + j,
with the coefficients α = 1, β = j (j =

√
−1). Output obtained is y[n] = =(1 + j) = 1, while αy1[n] +

βy2[n] = 0. Clearly, y[n] 6= αy1[n] +βy2[n]. Hence, this system isn’t linear. An interesting property to
note is that although the system isn’t linear, it obeys the principle of superposition when we restrict
ourselves to only taking the sum of any two signals. Indeed, =(x1[n] + x2[n]) = =(x1[n]) + =(x2[n]).
This property of a system is called additivity. Thus, the system y[n] = =(x[n]) is an additive system.

Coming to our second example, consider the following system :

y[n] =


x2[n]

x[n− 1]
if x[n− 1] 6= 0

0 otherwise.

It is easy to see that this system is non-linear. However, this system also has a special property.
Although this system isn’t linear, it obeys the principle of superposition when we restrict ourselves to
only multiplying the signal by a complex constant. Indeed if x[n] gives the output y[n], then the input
αx[n] gives the output αy[n] ∀ α ∈ C. This property of the system is called homogeneity. Thus, the
given system is a homogeneous system.

These properties of additivity and homogeneity define linearity. A system is linear if it is both ho-
mogeneous and additive. This can be neatly explained as follows. A mapping from y1[n] , y2[n] to
αy1[n] + βy2[n] is guaranteed only if y1[n] is mapped to αy1[n], y2[n] to βy2[n] and if αy1[n] , βy2[n]
are mapped to αy1[n] + βy2[n] when we perform the corresponding operations on the inputs x1[n] ,
x2[n]. By definition, homogeneity guarantees the first two mappings and additivity guarantees the
third. Hence additivity and homogeneity together guarantee linearity, or a linear system is one which
is both additive and homogeneous.

Definition 4.2.1. A linear system can thus also be defined as one which obeys the following two
properties :

1. For all inputs x[n], if the output of x[n] is y[n], then the output of αx[n] must be αy[n] ∀ α ∈ C.

2. For any two inputs x1[n] , x2[n], if the corresponding outputs are y1[n] , y2[n], then the output
of x1[n] + x2[n] must be y1[n] + y2[n].

13

Digital Signal Processing -Ishan Kapnadak

The important question to ask at this point is : Is linearity enough to meet our criterion? And the
answer is no. Linearity is a necessary, but not a sufficient condition, as shall be shown ahead.

4.3. Shift Invariance

Apart from linearity, another important property of systems is Shift Invariance. What this basically
means is that our system must react in the same way to a particular input x[n] even if that input was
sent at a different time. This can be defined as follows :

Definition 4.3.1. A system is defined as a shift-invariant system if it satisfies the following property
:
If a particular input x[n] gives the output y[n], then the input x[n+ d] must give the output y[n+ d],
for any input sequence x[n] and any d ∈ Z.

In other words, if we shift our input sequence by any arbitrary number of samples, then the correspond-
ing output sequence must be shifted in the same way. This must hold for all input sequences. Shift
invariance is important as it ensures that our system obeys the same characteristics throughout time.
Shift invariance is also an essential property we require in systems to ensure that a complex exponential
input produces a complex exponential output. To illustrate this, consider the system y[n] = nx[n].
Clearly, this system is linear. But, it doesn’t obey our property. When we send in the input phasor
x[n] = A0e

(ω0n+φ0), we get the output y[n] = A0ne
(ω0n+φ0), which isn’t a phasor, as the amplitude of

y[n] varies with n. The source of this error is the fact that the same input produces different outputs
based on when it is sent into the system. This very problem is solved by shift invariance. Note : Shift

Invariance is the more general ”version” of the more common ’Time Invariance’. Time Invariance is
Shift Invariance in which the independent variable is time. The question to ask now is : Are linearity
and shift invariance sufficient conditions for our system to meet our objective. Before answering this
question, we talk about certain properties of Linear Shift Invariant (LSI) Systems, and find a way to
characterise LSI systems through what is known as the unit impulse response of an LSI system.

4.4. Unit Impulse Response and Convolution

The unit impulse is the signal x[n] which is equal to 1 for n = 0 and equal to 0 for all n 6= 0. The
unit impulse signal is represented as δ[n]. The signal δ[n] is the unit impulse signal centred at n = 0.
However, we can also construct a signal which is 1 at an arbitrary point n = n0 and zero everywhere
else. Such a signal would be represented as δ[n − n0]. The signal which is 2 when n = 0 and zero
everywhere else would be represented as 2× δ[n].

The unit impulse response of an LSI system is the output sequence y[n] when the input sequence is
the unit impulse (x[n] = δ[n]). The unit impulse response of an LSI system is commonly denoted
by h[n]. For example, consider the system y[n] = x[n] + x[n − 1]. Its unit impulse response will be
h[n] = δ[n] + δ[n− 1]. Thus, we get the unit impulse response as h[n], which is equal to 1 when n = 0
or n = 1 and equal to zero otherwise.

Before illustrating the power of the unit impulse response, we first show an interesting feature of the unit
impulse signal. Any input sequence x[n] can be represented as a linear combination of appropriately
scaled and shifted unit impulses. This is fairly straightforward to see. For the index i, we construct
x[i] by multiplying x[i] to the unit impulse at that index, or δ[n− i]. On adding up these terms for all
integer i, we get back our original sequence x[n]. Thus x[n] can be represented as follows :

x[n] =

∞∑
i=−∞

x[i] · δ[n− i]

To verify this, consider that we put n = k. In the summation, all the δ terms not corresponding to
i = k vanish as the unit impulse function is zero there. What remains is simply δ[k − k] = 1. This
is then scaled by x[k]. Hence, we obtain our original sequence, as we can do this for every k. This
notation seems a bit more cumbersome than the convenient notation x[n]. But this is a really powerful
tool as it enables us to construct the output sequence y[n] via the unit impulse response h[n].

14

Digital Signal Processing -Ishan Kapnadak

We start with the input sequence δ[n]. This produces the output h[n], the unit impulse response of our
LSI system. We now shift our input by ′k′ samples. As our system is shift invariant, the output will
also shift by ′k′ samples. Thus we now get the input-output pair δ[n− k] , h[n− k]. We now multiply
our input by the constant x[k], the value of our input at n = k. As our system is homogeneous,
the output is also multiplied by the same constant. So, we get the input-output pair x[k] · δ[n − k] ,
x[k] · h[n− k]. Finally, we invoke additivity, and sum over all integer k. Hence finally, our LSI system
takes in

∑∞
k=−∞ x[k] ·δ[n−k] as our input and gives the output

∑∞
k=−∞ x[k] ·h[n−k]. Now, note that

the input is simply x[n], as was shown above. Therefore, the output is our required output sequence
y[n]. Thus, we can write :

y[n] =

∞∑
k=−∞

x[k] · h[n− k]

This was possible only because our system was linear and shift-invariant. Hence, we state the following
important theorem:

Theorem 4.4.1. The output of any input sequence is known for an LSI system if we know its impulse
response. In other words, An LSI system is completely characterised by its impulse response.

The output y[n] is obtained by performing a certain operation between the two sequences x[n] and
h[n]. This operation proves to be really important in the field of signal processing. It is known as
Convolution. In the equation y[n] =

∑
k∈Z x[k] · h[n− k], we say that x[n] and h[n] are convolved to

obtain y[n] or y[n] is obtained from the convolution of x[n] and h[n]. Convolution is not an operation
which is restricted only to an input sequence and the impulse response. Convolution can be performed
on any two sequences.

It is recommended that the reader try out this operation of convolution by hand on two finite-length
sequences to get a better understanding of convolution. Finite-length sequences are sequences which
are non-zero only at finite instances. On working, it is easy to verify the following proposition.

Proposition 4.4.2. The maximum possible number of non-zero points in the convolution, y[n], of
x[n] and y[n] is equal to one less than the sum of number of non-zero points in x[n] and h[n].
Or : (Ny[n])max = Nx[n] +Nh[n]−1, where Nα[n] denotes the number of non-zero points in the sequence
α[n]

A detailed proof of this is left as an exercise to the interested reader. To visualise this process of
convolution, consider the following. h[n − k] is simply the sequence h[k] starting at the index n and
reversed. To obtain the convolution of x[n] and h[n], we first fix a particular n. We centre the reverse
sequence h[−k] at this n. Then we take the product of x[k] and h[n − k] at corresponding locations
and sum up all these products. This gives us the value for the convolution at a particular n. We
repeat this process for all n, to obtain our convolved sequence y[n]. The process of convolution can be
represented in a concise manner as follows :

If y[n] is the convolution of x[n] and h[n], we can denote y[n] as : y[n] = x[n] ∗ h[n]. It is clear that
the convolution of two sequences may not always be defined. The sum x[n] ∗ h[n] is an infinite sum
for every instance of the convolution. For the convolution to be defined, this sum must be convergent
at every value of n. Evidently, it is possible that the sum may be divergent. Consider x[n] and
h[n] to be two constant sequences having value 1 at all points. Clearly, the convolution summation
y[n] =

∑
k∈Z x[k] · h[n− k] =

∑
k∈Z(1) is divergent.

Now we prove two rather simple but powerful results, namely, the commutativity and associativity of
convolution. First, lets prove commutativity.

Proof. Consider the convolution

y[n] =
∑
k∈Z

x[k] · h[n− k]

15

Digital Signal Processing -Ishan Kapnadak

Let us define l = n− k. l = n− k ⇒ k = n− l.
k runs over all integers, Z⇒ l runs over all integers, Z.

∴ y[n] =
∑
l∈Z

h[l] · x[n− l]

This is the same expression as the first one, but with the roles of x[n] and h[n] interchanged. Hence,
convolution is commutative, or x[n] ∗ h[n] = h[n] ∗ x[n].

Now, we prove associativity.

Proof. Consider that we convolve the convolution of two sequences a[n] and b[n] with a third sequence
c[n].

(a[n] ∗ b[n]) ∗ c[n] =
∑

k ∈ Z(a ∗ b)[n− k] · c[k] =
∑
k∈Z

∑
l∈Z

a[n− k − l] · b[l] · c[k]

Now, we put m = n− k − l.

(a[n] ∗ b[n]) ∗ c[n] =
∑
k∈Z

∑
m∈Z

a[m] · b[n−m− k] · c[k] = a[n] ∗ (b[n] ∗ c[n])

Hence, convolution is associative.

Now, let us shift our focus back to the problem of input phasors and output phasors. We wish to check
if linearity and shift invariance are sufficient conditions for our system to obey the requirement that
an input phasor will give an output phasor of the same frequency. For any LSI system, the output
sequence can be written as :

y[n] =
∑
k∈Z

h[k] · x[n− k]

where h[n] in the impulse response. Consider that we give in the input x[n] = A0e
j(ω0n+φ0). The

output will be given as :

y[n] =
∑
k∈Z

h[k] · x[n− k] =
∑
k∈Z

h[k] ·A0e
j(ω0(n−k)+φ0)

∴ y[n] =
(
A0e

j(ω0n+φ0)
)
×
∑
k∈Z

h[k] · e−jω0k

In the above expression, for a particular ω0, the term
∑
k∈Z h[k] · exp(−jω0k) will be a complex

constant which will alter the phase and magnitude of the input x[n]. Hence the output y[n] is also a
phasor of the same frequency. Thus, we see that linearity and shift invariance are enough to satisfy
our requirement. There is still one problem though. Our assertion holds true only if the infinite sum
converges. Thus, if the sum is convergent, our system satisfies our requirement. This introduces us to
one more property necessary in our system - namely, stability.

4.5. Stability and the Frequency Response

Before we talk about stability, we spend some time talking about the troublesome term
∑
k∈Z h[k] ·

exp(−jω0k). This term is a function only of the input frequency ω0. This term is denoted as H(ω0)
and, if convergent, is known as the frequency response of the system. H(ω0) is a complex constant
which alters the phase and magnitude of our input, to give us the output. Thus, we can represent the
output as y[n] = x[n]×H(ω0), when x[n] is an input phasor of frequency ωo. It is important to note
here that we are dealing with normalised frequencies, as was decided earlier. The frequency response
may or may not be defined, depending on the convergence of the infinite sum. Consider the system,
having impulse response h[n] = 1 for all non-negative n. Its frequency response would be

16

Digital Signal Processing -Ishan Kapnadak

H(ω0) = 1 + e−jω0 + e−2jω0 + e−3jω0 · · ·

Putting ω0 = 0, we get H(0) = 1 + 1 + 1 + · · · which is divergent. Putting ω0 = π, we get H(π) =
1− 1 + 1− · · · which is divergent. Hence, we see that H(ω0) isn’t defined at these values of ω0.

Note : It is possible that H(ω0) converges at all ωo or no ω0. It is also possible that it may be divergent
at isolated points.
It is interesting to note that the term e−jω0k only changes the angle at every specific value of k,
and its magnitude is always unity. Considering this fact, we look at what is known as the absolute
summability of the impulse response.

We say that the impulse response h[n] is absolutely summable if the sum of its magnitudes converges.
In other words, h[n] is absolutely summable if :∑

k∈Z

∣∣h[k]
∣∣ < +∞

The assumption of absolute summability of the impulse response also guarantees us the convergence
of H(ω0).

Proof. ∣∣H(ω0)
∣∣ =

∣∣∣∣∣∣
∑
k∈Z

h[k] · e−jω0k

∣∣∣∣∣∣ ≤
∑
k∈Z

∣∣h[k]
∣∣

If h[n] is absolutely summable,
∣∣H(ω0)

∣∣ < +∞, hence H(ω0) converges. Note : the term exp(−jω0k)
disappears in the last step as its magnitude is unity.

An important point to note is that here we have only considered convergence of the magnitude and
have ignored the convergence of phase. It is possible that the phase of H(ω0) is divergent, making
H(ω0) divergent too. For a complete proof, we would need to prove convergence of phase as well.
However, in all our applications, we take it for granted that the phase converges.

We have only proved that the absolute summability is a sufficient condition for existence of H(ω0).
It is not a necessary condition. It is possible that H(ω0) converges even if the absolute sum of h[n] is
divergent.

We now move on to stability of a system. In extremely simplistic words, a stable system is one which
doesn’t blow up. Now this is hardly a satisfying definition. In reality, there are multiple forms of
stability, various definitions. We shall be concerned with a form of stability known as the Bounded
Input Bounded Output Stability or the BIBO stability.

Before talking about BIBO stability, we first define what is a bounded sequence.

Definition 4.5.1. A sequence x[n] is said to be bounded iff ∃ a non-negative α ∈ R such that∣∣x[n]
∣∣ ≤ α ∀ n ∈ Z

The definition is pretty clear in explaining what a bounded sequence is. To further explain this, we can
define a band within which x[n] lies for all n, if it is bounded. Note : Boundedness of a sequence has
no relation with its absolute summability. For example, any constant non-zero sequence is bounded
but not absolutely summable.

Now, we define what is it meant for a system to be BIBO stable.

Definition 4.5.2. A system is said to be BIBO stable if every bounded input sequence produces
a bounded output sequence.

BIBO stability of a system is independent of its other properties like linearity, shift invariance. It is
defined even for non-linear systems and systems which do not obey shift invariance. We now consider
a few examples of BIBO stability

17

Digital Signal Processing -Ishan Kapnadak

Example. Consider the system y[n] = Kx[n], where K is a constant. If our input sequence is
bounded, then we have that

∣∣x[n]
∣∣ ≤ α for some real α.

∴
∣∣y[n]

∣∣ = |K| ×
∣∣x[n]

∣∣ ≤|K|α
Thus, y[n] is a bounded sequence and our the system is BIBO stable.
Example. Consider the system y[n] =

√
nx[n]. We put the x[n] as the constant sequence x[n] = 1.

This is a bounded input. ∴ y[n] =
√
n

y[n]→∞ if n→∞. Hence, y[n] is unbounded and the system is BIBO unstable.
Since our definition of BIBO stability must hold for every sequence, we find an interesting thumb rule
in proving/disproving stability. If we must prove that a system is stable, we must show that the output
is bounded for all bounded inputs. Or we must prove it for a general sequence. A single example won’t
suffice. However, if we have to disprove stability, a single counter-example suffices. This realisation is
particularly useful to know how to approach a prove/disprove problem.

We now consider the stability of an LSI system by looking at its impulse response. Consider

y[n] =
∑
k∈Z

h[k] · x[n− k]

∣∣y[n]
∣∣ =

∣∣∣∣∣∣
∑
k∈Z

h[k] · x[n− k]

∣∣∣∣∣∣ ≤
∑
k∈Z

∣∣h[k]
∣∣×∣∣x[n− k]

∣∣
Now, if the input is bounded,

∣∣x[n]
∣∣ ≤ α for some non-negative α.

∴
∣∣y[n]

∣∣ ≤ α∑
k∈Z

∣∣h[k]
∣∣

Thus, if the impulse response is absolutely summable, the output y[n] is bounded for any bounded
input =⇒ the system is stable. Thus, absolute summability of the impulse response is a sufficient
condition for stability. However, for an LSI system, it is also a necessary condition.

Proof. To prove that this is a necessary condition, we look for a troublesome input which explicitly
invokes the absolute summability criterion. Let h[k] be the impulse response of the system. We define
φ[k] as the sequence in which φ[k] is the phase of h[k] at every k. Now, define x[k] to be ejφ[k] if h[k]
is non zero and 0 when h[k] is 0.

Now, we only consider y[0]

y[0] =
∑
k∈Z

h[k] · x[−k] =
∑
k∈Z

∣∣h[k]
∣∣ · ejφ[k] · e−jφ[k] =

∑
k∈Z

∣∣h[k]
∣∣

Thus, unless h[k] is absolutely summable, y[0] will diverge. Hence, this output sequence isn’t bounded
and the system isn’t stable. Thus, the absolute summability of the impulse response is also a necessary
condition for stability of an LSI system.

Before moving on, I would like to point that an LSI system with a finite impulse response will be
unconditionally stable. It is easy to see that any finite length impulse response will be absolutely
summable, and hence the system defined by it will be stable.

4.6. Causality

Causality is the property of the system which forbids its output from depending on future inputs. In
other words, a causal system is one in which the output of a system depends only on the current input
and all previous inputs. Causality entails some sort of a ”cause-effect relationship”. The output of a
causal system is an ”effect” of its current and previous inputs. Formally, a causal system is defined as
follows.

18

Digital Signal Processing -Ishan Kapnadak

Definition 4.6.1. Consider that a system produces the outputs y1[n] and y2[n] for the corresponding
inputs x1[n] and x2[n]. If the two input sequences are identical upto some index n0, i.e x1[n] =
x2[n] ∀n ≤ n0. Then, the system is said to be causal if y1[n] = y2[n] ∀n ≤ n0, for all such x1[n], x2[n]
and n0.

This is how we formally define a causal system. I will not talk about how this definition relates to the
property that the output is dependent only on the current and previous inputs. Readers are encouraged
to spend some time working out the details to see the beauty of this definition.

Now we consider causality in LSI systems. Recall that for an LSI system, the output is the convolution
of the input and the impulse response, given as :

y[n] =
∑
k∈Z

h[k] · x[n− k]

For a causal system, we must have that the contribution of future inputs to the output must be zero.
Thus, the coefficient of x[n−k] must be zero for all n−k > n, or for all k < 0. Thus, for an LSI system
to be causal, h[k] must be zero for all negative k. Note that causality is a property independent of the
others. Causality is well defined even for non-LSI systems.

We now list down the properties of systems we have discussed so far.

1. Additivity

2. Homogeneity

3. Shift Invariance

4. Stability (in particular, BIBO stability)

5. Causality

19

Digital Signal Processing -Ishan Kapnadak

5. Domains and Transforms

5.1. Sequences as Vectors

Before we move on, I would like to introduce the idea of vectors in this field of signal processing. Recall
that an n-dimensional vector x ∈ Cn is a collection of n complex numbers (x1, x2 · · ·xn). Most of us
have seen vectors in physical scenarios, such as the three-dimensional force vector or the acceleration
vector. But vectors are actually a much more general class of mathematical objects. We often use
vectors to represent coordinates in n-dimensional spaces. A vector can also represent the coefficients
of a polynomial. We now use vectors to represent sequences.

A sequence can easily be represented as a vector with each element of the sequence being a separate
component of the vector. In this case, our sequence vector is an infinite dimensional vector which is
indexed by the set of integers Z.

Recall that the inner product or the dot product between two vectors is the sum of products of the
corresponding components of the two vectors. For example, consider the two 3-dimensional vectors
x = (x1, x2, x3) and y = (y1, y2, y3). Their inner product is defined as :

< x,y >= x1y1 + x2y2 + x3y3

Now, consider the two sequences x1[n] and x2[n]. Their inner product is defined as :

< x1, x2 >=
∑
n∈Z

x1[n] · x2[n]

After having defined the inner product, we are able to define certain other properties such as the
magnitude of a sequence and the distance between two sequences. The magnitude or norm of a
sequence is the square root of the inner product of that sequence with itself. Mathematically,

‖x‖ =
√
< x, x >

Now, the distance between two sequences is defined as the norm of their difference.

d(x1, x2) = ‖(x1 − x2)‖
Note: The definition of the inner product we have given is valid only for real vectors. For complex
vectors, the inner product between two vectors x and y is defined as :

< x,y >=
∑
n

x[n] · y[n]

where y[n] is the complex conjugate of y[n]. We modify our definition of inner product to preserve
our notion of magnitude, noting that xx̄ = ‖x‖2 for a complex number x. Indeed, this definition is
convenient as it works well enough for both vectors with real as well as complex components. Note:
The inner product is not commutative but follows the simple relation < x, y >= < y, x >.

Now, we turn back our attention to the frequency response H(ω0). We can slightly tweak the expression
for the frequency response as follows:

H(ωo) =

+∞∑
n=−∞

h[n] · e−jω0n =

+∞∑
n=−∞

h[n] · (ejω0n)

∴ H(ω0) =< h, ejω0 >

where h and ejω0 are the sequences h[n] and ejω0n. We now use the idea of projection in inner
products. We just saw that the frequency response is the inner product of the impulse response with
the complex exponential of that frequency. We can restate this as follows. The frequency response
of the system at a particular frequency ω0 is the projection of the impulse response h[n] along the
corresponding complex exponential sequence ejω0 . We now consider what happens when we consider
general sequences x[n] other than the impulse response and project them onto complex exponentials.

20

Digital Signal Processing -Ishan Kapnadak

5.2. The Discrete Time Fourier Transform

5.2.1 Introduction

Consider the inner product of a sequence x[n] onto a sequence ejωn. If this sum converges, we denote
it as X(ω) and

X(ω) =

+∞∑
n=−∞

x[n] · e−jωn

X(ω) is known as the Discrete Time Fourier Transform of the sequence x[n], or DTFT for short.
Note that all sequences may not have a DTFT. For the DTFT of a sequence to exist, the sum of
x[n] · e−jωn must converge.

The DTFT is a powerful tool. By taking the DTFT, we have simply ”resolved” the sequence along its
different frequency components. In other words, the DTFT of a sequence for a particular frequency,
say ω, represents the contribution of that frequency to the entire sequence, or it is the component of the
sequence along the corresponding vector ejωn. Also, the individual vectors ejωn form an orthogonal set.
This further simplifies our analysis as it allows us to treat each frequency component individually. This
is precisely what we often do while resolving forces along perpendicular directions and then analysing
each direction separately or independently. The only difference is that here we have a continuum of
directions as ω is a continuous variable.

Note that ω is a continuous variable restricted between −π and π, based on our understanding of
normalised frequencies. In fact, we can have ω vary over any continuous interval of length 2π. It may
as well be between 0 to 2π or 3π to 5π. This is because the frequency decomposition will be unique
only in any continuous interval of 2π. Once a single 2π interval has been defined, the entire spectrum
is only filled with copies of this interval. For convenience, we choose to define ω between −π and π.

Using the DTFT, we have transformed our problem from the time domain to the frequency domain.
A domain is simply an environment in which or a particular variable with respect to which we analyse
signals or functions. The way we defined our sequence originally as x[n] was the definition of the
sequence in the time domain. This is because our variable of analysis is time. We are analysing
how the sequence varies with time. The DTFT of the sequence x[n], X(ω) is an equally adequate
description of the sequence. It is a definition of the sequence in the frequency domain. This is because
we are now analysing our sequence based on contributions of different frequencies to the signal. Thus,
the frequency becomes our variable of analysis. Transforms between domains are commonly used in
mathematics and engineering to analyse problems with a different perspective. What is important
though, is knowing how to switch between domains. Using the DTFT, we have switched from the time
domain to the frequency domain. The question now is - how do we switch back? Is there an ’inverse’
transform associated with the DTFT?

5.2.2 Constructing the Inverse DTFT

We proceed about constructing the inverse DTFT the same way we reconstruct vectors from their
individual components - multiplying each component by the corresponding unit vector and sum. The
component along the vector corresponding to ω is the DTFT at that frequency, X(ω). The unit vector
along ω is κ · ejωn. We allow the exponential to be multiplied by a constant κ as the vector ejωn isn’t
normalised. As ω is a continuous variable, the sum is replaced by an integral. We take ω to vary
between −π and π, however, any continuous interval of length 2π works. Hence, we take the most
general case where the integral is over any interval of 2π. The inverse DTFT is then given by :

κ

∫
2π

X(ω) · ejωn dω

To find the value of κ, we need to normalise the vector ejωn, i.e,divide this vector by its norm defined
with respect to our definition of inner product.

21

Digital Signal Processing -Ishan Kapnadak

‖ejωn‖2 =

∫
2π

ejωn · ejωn dω =

∫
2π

dω = 2π

∴ κ =
1

‖ejωn‖2
=

1

2π

(Recall that we had mentioned earlier that a peculiar factor of 1√
2π

is found when dealing with Fourier

transforms. This is the same factor that has just emerged while normalising) Substituting this value
of κ, our inverse DTFT becomes

1

2π

∫
2π

X(ω) · ejωn dω

To verify if this is correct, we plug-in the inner product summation of X(ω) into this formula. We
expect to get back our sequence x[n]. Let us verify this.

1

2π

∫
2π

X(ω) · ejωn dω =
1

2π

∫
2π

 +∞∑
k=−∞

x[k] · e−jωk
 ejωn dω =

1

2π

+∞∑
k=−∞

x[k] ·
(∫

2π

ejω(n−k) dω

)

The integral can now be easily evaluated. Observe that the integral is the inner product of the two
vectors ejωn and ejωk. From orthogonality, this term vanishes for all k 6= n and becomes equal to
the square of the norm, 2π when k = n. Thus, the integral can be conveniently replaced by the term
2π · δnk, where δij is the Kronecker delta function which takes the value 1 when i = j and is zero
otherwise. Thus, our expression simplifies to:

1

2π

+∞∑
k=−∞

x[k] ·
(∫

2π

ejω(n−k) dω

)
=

1

2π

+∞∑
k=−∞

x[k] · 2π · δnk =
1

2π
x[n] · 2π = x[n]

Thus, we have obtained our original sequence by applying the inverse DTFT. Summarising, the inverse
DTFT of a function X(ω) is given by:

x[n] =
1

2π

∫
2π

X(ω) · ejωn dω

Before proceeding, I would like to point out that we could’ve as reasonably constructed DTFT as
the transform from the frequency domain to the time domain, and its inverse the other way round.
However, it is important to note that we consider time as our natural domain. It is easiest and most
natural to visualise signals in the time domain. Hence, all transforms transform from the time domain
and all the inverse transforms transform to the time domain.

5.2.3 Some Properties of the DTFT

We now prove an interesting property of the DTFT of the convolution of two sequences.

Theorem 5.2.1. If two sequences x1[n] and x2[n] have DTFT’s, then the DTFT of their convolution
is equal to the product of the DTFT’s of x1[n] and x2[n].

Proof. Consider X1(ω) and X2(ω) to be the DTFT’s of x1[n] and x2[n] respectively. The convolution
of the two sequences is x[n] = x1[n] ∗ x2[n]. The DTFT of x[n] will be equal to :

X(ω) =

+∞∑
n=−∞

x[n] · e−jωn =

+∞∑
n=−∞

+∞∑
k=−∞

x1[k] · x2[n− k] · e−jωn

Now, we substitute n − k = l. Observe that when n and k run over all integers Z independently, so
does l. Hence, we can replace the summation in n with the index as l

22

Digital Signal Processing -Ishan Kapnadak

∴ X(ω) =

+∞∑
k=−∞

+∞∑
l=−∞

x1[k] · x2[l] · e−jω(l+k) =

+∞∑
k=−∞

+∞∑
l=−∞

x1[k] · e−jωk · x2[l] · e−jωl

Now, the indices l and k are independent of each other, hence we can split the summation.

X(ω) =

 +∞∑
k=−∞

x1[k] · e−jωk
 ·

 +∞∑
l=−∞

x2[l] · e−jωl


∴ X(ω) = X1(ω) ·X2(ω)

We can apply this result to a general LTI system. Consider x[n] to be the input sequence, h[n] to be
the impulse response of the system. If x and h both have DTFT’s, then we can conveniently find the
output using the above theorem. As y[n] = x[n]∗h[n], taking DTFT, we have that Y (ω) = X(ω)·H(ω).
From this, we can easily calculate y[n] using the inverse DTFT.

Now that, we have considered the DTFT of the convolution of two sequences, we consider the DTFT
of the product of two sequences.

Theorem 5.2.2. If two sequences x1[n] and x2[n] have DTFT’s, then the DTFT of their product is
the periodic convolution of their DTFT’s.

Now, we are yet to explain what is meant by the periodic convolution of two DTFT’s. We shall prove
this and explain this idea by means of the proof itself.

Proof. Define x[n] = x1[n] · x2[n]. We are interested in finding the DTFT X(ω) of x[n].

X(ω) =

+∞∑
n=−∞

x[n] · e−jωn =

+∞∑
n=−∞

x1[n] · x2[n] · e−jωn

We now substitute the value of one of the sequences, say x1[n] as its inverse DTFT.

x1[n] =
1

2π

∫
2π

X1(Ω) · ejΩn dΩ

Note, we are using a different variable Ω as this variable is different from the ω in the expression above.
We substitute this value of x1[n] into the above expression.

X(ω) =

+∞∑
n=−∞

(
1

2π

∫
2π

X1(Ω) · ejΩn dΩ

)
x2[n] · e−jωn

∴ X(ω) =
1

2π

∫
2π

X1(Ω)

 +∞∑
n=−∞

x2[n] · e−j(ω−Ω)n

 · dΩ

∴ X(ω) =
1

2π

∫
2π

X1(Ω) ·X2(ω − Ω) dΩ

Now, it is easy to see why the above integral is also a convolution. Instead of convolving over discrete
indices , we are convolving over a continuous variable. Hence, the summation is replaced by the
integral. X1(Ω) and X2(ω−Ω) play the same roles as x1[n] and x2[n]. The integral is called a periodic
convolution because we are integrating over a periodic-length interval (recall that the DTFT’s are
periodic with a period 2π). Like the regular convolution, periodic convolution is also commutative.

23

Digital Signal Processing -Ishan Kapnadak

This can be easily proved by performing the substitution λ = ω − Ω in the integral. Hence, the roles
of X1 and X2 can be interchanged.

We shall prove a few fundamental properties of the DTFT now.

1. Linearity

The DTFT is a linear transform. If two sequences x[n] and y[n] have the DTFT’s X(ω) and
Y (ω) then the DTFT of αx[n] + βy[n], if it exists, is equal to αX(ω) + βY (ω)

Proof. Let z(n) = αx[n] + βy[n].

Z(ω) =

+∞∑
n=−∞

(αx[n] + βy[n]) · e−jωn = α

+∞∑
n=−∞

x[n] · e−jωn + β

+∞∑
n=−∞

y[n] · e−jωn

∴ Z(ω) = αX(ω) + βY (ω)

2. Time Reversal

If the DTFT of x[n] is X(ω), then the DTFT of the reversed signal y[n] = x[−n] is Y (ω) =
X(−ω).

Proof.

Y (ω) =

+∞∑
n=−∞

y[n] · e−jωn =

+∞∑
n=−∞

x[−n] · e−jωn

Now, we substitute m = −n and sum over all m.

Y (ω) =

+∞∑
m=−∞

x[m] · e−jω(−m) =

+∞∑
m=−∞

x[m] · e−j(−ω)m

∴ Y (ω) = X(−ω)

3. Complex Conjugate

If the DTFT of the sequence x[n] is X(ω), then the DTFT of the complex conjugate sequence
y[n] = x[n] is equal to Y (ω) = X(−ω).

Proof.

Y (ω) =

+∞∑
n=−∞

x[n] · e−jωn =

+∞∑
n=−∞

x[n] · e−j(−ω)n

∴ Y (ω) = X(−ω)

24

Digital Signal Processing -Ishan Kapnadak

5.2.4 Spectral Energy Density and Parseval’s Theorem for sequences

Consider, the inner product of two sequences x1[n] and x2[n], having DTFT’s X1(ω) and X2(ω).

< x1, x2 >=

+∞∑
n=−∞

x1[n] · x2[n]

By carefully observing, we can see that the expression for the inner product can be regarded as the
DTFT of the product of the two sequences x1[n] and x2[n] at the specific frequency ω = 0 (Verify!).
Thus, we can plug ω = 0 in our periodic convolution formula to get

+∞∑
n=−∞

x1[n] · x2[n] =
1

2π

∫
2π

X1(ω) ·X2(ω) dω

This is known as the Parseval’s Theorem for sequences. Note that the argument of X2 is Ω and not
−Ω as the complex conjugate cancels out the minus sign present in the periodic convolution formula.
The Parseval’s theorem highlights the equality of dot products in both the time domain and the
frequency domain. Indeed, the expression on the right (dot product in the frequency domain) is the
continuous analogue of the expression on the left (dot product in the time domain). This is equivalent
to saying that a change of coordinate systems preserves the inner product.

We define the energy present in a sequence x[n] as the squared norm of the sequence, i.e ‖x‖2 =< x, x >.
Now, we put x1[n] = x2[n] = x[n] in the Parseval’s theorem. We get :

‖x‖2 =

+∞∑
n=−∞

x[n] · x[n] =

+∞∑
n=−∞

∣∣x[n]
∣∣2

∴ ‖x‖2 =

+∞∑
n=−∞

∣∣x[n]
∣∣2 =

1

2π

∫
2π

∣∣X(ω)
∣∣2 dω

The term
∣∣X(ω)

∣∣2 is known as the Spectral Energy Density of the sequence. It tells us the distri-
bution of energy amongst the different frequencies. A frequency with higher spectral energy density
contributes more to the total energy of the sequence. To get the total energy, we integrate the spectral
energy density over the entire spectrum, which gives us ‖x‖2.

5.3. The Z Transform

5.3.1 Introduction

Although, the DTFT is a powerful tool, it is not powerful enough. Not all sequences have a DTFT.
For example, consider the sequence x[n] = 3nu[n], where u[n] is the unit step function which is equal
to 1 for n ≥ 1 and 0 for n < 0. If we try to compute its DTFT, we run into a problem.

X(ω) =

+∞∑
n=−∞

x[n] · e−jωn =

+∞∑
n=0

3n · e−jωn

Thus, we see that the infinite sum and the DTFT of the given sequence does not exist. This is a
problem. Analysing this sequence in the time-domain proves to be extremely tedious. We want a
method of analysing this sequence easily in some other domain. We see that the divergence of the
above sum occurs as |3| > 1 causes the magnitude of every term to increase and grow unboundedly.
What if we were to multiply every term with an equivalent decaying exponential whose magnitude is
greater than 3. We could then cause the magnitude of every term to tend towards zero and the sum
to converge. This is the idea that gives rise to the Z transform.

25

Digital Signal Processing -Ishan Kapnadak

Consider that we multiply the entire sequence by a decaying exponential A−n. The Z transform is now
the DTFT of this modified sequence. The Z transform of a sequence x[n] is denoted as X(z) = Z{x[n]}.
We substitute z = Aejω which gives us the Z transform of x[n] = 3nu[n] as :

X(z) =

+∞∑
n=0

3n · z−n

Clearly, this sum converges only in the region R where |A| > 3. This region R, is known as the region
of convergence of the Z transform. When we restrict ourselves to this region, the expression given
above evaluates as:

X(z) =

+∞∑
n=0

3n · z−n =
z

z − 3
when |z| > 3

Thus, the Z transform of the sequence x[n] = 3nu[n] is the expression X(z) = z
z−3 in the region R.

It is important to note that the Z transform is really a pair of the expression X(z) and the region of
convergence R. Both these parts are equally important. It is easy to see that changing the expression
of the infinite sum will change the original sequence x[n] which led to that particular Z transform.
However, it is not so intuitive that if we change the region of convergence, keeping the expression X(z)
constant, we will still end up with a different sequence x[n]. We will demonstrate this now. Consider
that another certain sequence y[n] has the Z transform Y (z) = z

z−3 but with a region of convergence

R′ where |z| < 3. We can rewrite this expression as follows :

Y (z) =
z

z − 3
=
− 1

3z

1− 1
3z

As |z| < 3,
∣∣ 1

3z
∣∣ < 1. Hence, we can expand the denominator as a geometric series.

Y (z) =
− 1

3z

1− 1
3z

=

(
−1

3
z

) +∞∑
n=0

(
1

3
z

)n
= −

+∞∑
n=0

(
1

3
z

)n+1

By observation, this is the sequence y[n] = −3nu[−n− 1], which is a left-sided exponential. Hence, we
get two different sequences y[n] and x[n] from the Z transform but with different regions of convergence.
For a general sequence x[n], its Z transform is defined as:

X(z) =

+∞∑
n=−∞

x[n] · z−n for z ∈ R, an appropriate region of convergence

Let us calculate the Z transform for the unit impulse sequence δ[n]. We shall denote this by Xδ(z).

Xδ(z) =

+∞∑
n=−∞

δ[n] · z−n = 1

Thus, Xδ(z) = 1 and its region of convergence is, evidently, the entire complex plane C.
Expanding on the first example , we see that a Z transform z

z−α corresponds to the sequence x[n] = αun

in the region R1, where |z| > |α| and to the sequence x[n] = −αnu[−n − 1] in the region R2, where
|z| < |α|. In a sense, we have computed the inverse Z transform of the function X(z) = z

z−α . Now, the
question is: is there a way of finding the inverse Z transform of any function X(z)? The answer is yes.
Given a function X(z), its inverse Z transform can be found as follows:

x[n] = Z−1{X(z)} =
1

2πj

∮
C
X(z) · zn−1dz

where C is a contour encircling the origin present entirely in the region of convergence, R. However,
the proof of this result is not something we will be tackling. Moreover, we shall not be using this

26

Digital Signal Processing -Ishan Kapnadak

complex integral at all. The calculation of inverse Z transforms is most efficiently done by experience
and remembering inverse Z transforms of some common functions.

It is interesting to note that the Z transform is a more general form of the Discrete Time Fourier
Transform. Indeed, if the region of convergence contains the contour |α| = 1, we can substitute α = 1
to obtain the DTFT. Thus, looking at the region of convergence, we can also tell whether the DTFT
of a sequence exists or not.

5.3.2 Properties of the Z transform

1. Linearity

The Z transform is a linear transform. If two sequences x1[n] and x2[n] have Z transforms X1(z)
and X2(z) with regions of convergence R1 and R2, then the linear combination αx1[n] + βx2[n]
has the Z transform αX1(z) + βX2(z) with a region of convergence R containing R1 ∩R2.

The proof is straightforward. The important point to note here is that the region of convergence
R of the linear combination contains atleast the intersection R1∩R2. The region of convergence
may also expand. It is an interesting exercise to find two sequences where a linear combination
has an expanded region of convergence (Hint: Try to find a linear combination in which the two
troublesome regions of the sequences ”cancel” each other out).

2. Delaying or shifting Consider that the sequence x[n] has the Z transform X(z). Consider that
we delay the sequence by D samples. This sequence will be denoted as y[n] = x[n−D]. The Z
transform of this delayed sequence will be equal to Y (z) = z−DX(z).

Proof.

Y (z) =

+∞∑
n=−∞

x[n−D] · z−n

We now substitute l = n−D and evaluate the sum in terms of l.

Y (z) =

+∞∑
l=−∞

(
x[l] · z−l

)
· z−D = z−D

+∞∑
l=−∞

x[l] · z−l

∴ Y (z) = z−DX(z)

The region of convergence R of the delayed sequence remains the except for possible changes at
z = 0 or z →∞. To illustrate this, consider the following two examples:

Example 1 Consider that we delay the unit impulse sequence by D samples, giving us δ[n−D]
(here D is a positive number. As seen above, its Z transform will be z−D which doesn’t converge
at z = 0. Hence, the region of convergence of the delayed impulse will be C \ {0}.

Example 2 Consider that we advance the unit impulse sequence by D samples (or effectively,
delay by −D samples), giving us δ[n + D]. Its Z transform will be zD which doesn’t converge
for z →∞. Hence, the region of convergence of the advanced impulse will be C \ {z →∞}.

Note: In the complex plane, z →∞ is a contour.

3. Time Reversal

If the sequence x[n] has the Z transform X(z) with a region of convergence R, then the re-
versed sequence x[−n] has the Z transform X(z−1) where z−1 ∈ R. The proof for this is fairly
straightforward.

27

Digital Signal Processing -Ishan Kapnadak

4. Modulation

If the sequence x[n] has the Z transform X(z) with a region of convergenceR, then the modulated
sequence y[n] = βnx[n] has the Z transform Y (z) = X(zβ−1) where zβ−1 ∈ R.

5. Differentiation

X(z) =

+∞∑
n=−∞

x[n] · z−n region of convergence:R

dX(z)

dz
=

+∞∑
n=−∞

(−n) · x[n] · z−n−1 region of convergence: atleastR

−z dX(z)

dz
=

+∞∑
n=−∞

nx[n] · z−n region of convergence: atleastR

Thus, we see that the sequence nx[n] has the Z transform −z dX(z)
dz with a region of convergence

containing the original region of convergence. Note: The Z transform is an analytic function in
the region of convergence, hence derivatives of all orders exist and are continuous.

Consider the sequence x[n] = αnu[n]. Its Z transform is X(z) = z
z−α in the region |z| > |α|.

Now, we differentiate the Z transform:

dX(z)

dz
=

−αz−2

(1− αz−1)2
in the region: |z| > |α|

−z dX(z)

dz
=

αz−1

(1− αz−1)2
in the region: |z| > |α|

Thus, the Z transform αz−1

(1−αz−1)2 corresponds to the sequence nαnu[n]. Multiplying both sides

by α−1, we have that the Z transform z−1

(1−αz−1)2 corresponds to the sequence nαn−1u[n].

Now, we multiply by z which is equivalent to shifting the sequence by (−1) samples. Thus, the
Z transform 1

(1−αz−1)2 corresponds to the sequence (n+ 1)αnu[n+ 1] = (n+ 1)αnu[n].

6. Convolution

If two sequences x1[n] and x2[n] have the Z transforms X1(z) and X2(z) with regions of con-
vergence R1 and R2, then the Z transform of their convolution is X(z) = X1(z) ·X2(z) with a
region of convergence R containing R1 ∩R2.

Proof.

X(z) =

+∞∑
n=−∞

(x1 ∗ x2) · z−n =

+∞∑
n=−∞

+∞∑
k=−∞

x1[k] · x2[n− k] · z−n

Now, we put l = n− k.

X(z) =

+∞∑
l=−∞

+∞∑
k=−∞

x1[k] · x2[l] · z−(l+k) =

 +∞∑
k=−∞

x1[k] · z−k
 ·

 +∞∑
l=−∞

x2[l] · z−l


∴ X(z) = X1(z) ·X2(z)

28

Digital Signal Processing -Ishan Kapnadak

5.3.3 Poles, Zeroes and calculating Inverse Z Transforms

We now define two important terms in relation with Z transforms.

The zeroes of a Z transform are values of z for which the Z transform, X(z), becomes zero .

The poles of a Z transform are the values of z for which the Z transform, X(z), diverges or tends to
infinity.
A rational Z transform is one in which the Z transform is in rational functional form or X(z) can
be expressed as the ratio of two polynomials in z or in z−1:

X(z) =
N(z)

D(z)
=

M∑
k=0

bkz
−k

N∑
l=0

alz
−l

This can also be expressed as :

X(z) =
(z − z1)(z − z2) · · · (z − zM)

(z − p1)(z − p2) · · · (z − pN)
=

M∏
k=0

(z − zk)

N∏
l=0

(z − pl)

Here, the Z transform has M finite zeroes z = z1, z2 · · · zM and N finite poles z = p1, p2 · · · pN .

We now illustrate a method - the method of partial fractions to calculate inverse Z transforms for
rational Z transforms with the help of an example.
Example. Consider the Z transform:

H(z) =
z

(z − 3)2(z − 1
2)

This can be broken into partial fractions as follows :

H(z) =
A1z

z − 1
2

+
A2z

2 +A3z

(z − 3)2
=
A1z(z − 3)2 + (z − 1

2)(A2z
2 +A3z)

(z − 1
2)(z − 3)2

Comparing the numerator, we have:

A1z(z − 3)2 + (z − 1

2
)(A2z

2 +A3z) = z ⇒ A1z
2 − 6A1z + 9A1 +A2z

2 + (A3 −
A2

2
)z − A3

2
= 1

∴ A1 =
4

25
, A2 = − 4

25
, A3 =

22

25

Substituting these values back, we get:

H(z) =
4

25

z

(z − 1
2)

+
− 4

25z
2 + 22

25z

(z − 3)2
=

4

25

1

(1− 1
2z
−1)
− 4

25

1

(1− 3z−1)2
+

22

25

z−1

(1− 3z−1)2

Now, we have decomposed H(z) in terms of functions whose inverse transform we already know. The
inverse transform now depends on the region of convergence R. The poles are z = 1

2 and z = 3. Hence
there are three possible regions of convergence:

1. R1 : |z| < 1
2

2. R2 : 1
2 < |z| < 3

29

Digital Signal Processing -Ishan Kapnadak

3. R3 : 3 < |z|

In the region R3, we have the following inverse Z transform.

h3[n] =
4

25

(
1

2

)n
u[n]− 4

25
(n+ 1)3nu[n] +

22

25
n · 3n−1u[n]

In the region R2, we have the following inverse Z transform.

h2[n] =
4

25

(
1

2

)n
u[n] +

4

25
(n+ 1)3nu[−n− 1]− 22

25
n · 3n−1u[−n− 1]

In the region R1, we have the following inverse Z transform.

h1[n] = − 4

25

(
1

2

)n
u[−n− 1] +

4

25
(n+ 1)3nu[−n− 1]− 22

25
n · 3n−1u[−n− 1]

Thus, we have calculated the inverse Z transform of the function H(z) in all possible regions of
convergence. Th method of partial fractions can thus be used to compute the inverse Z transform of
rational Z transforms. We now illustrate how to compute the inverse Z transform of a finite series of
z.

Example. Consider the function G(z) = z2 + 2z+ 3 + 4z−1 + 5z−2. Any finite series can be analysed
using scaled and shifted impulses. We see that z2 corresponds to δ[n + 2], z corresponds to δ[n + 1]
and so on. Hence, the inverse Z transform is simply:

g[n] = Z−1{G(z)} = δ[n+ 2] + 2δ[n+ 1] + 3δ[n] + 4δ[n− 1] + 5δ[n− 2]

Thus, g[n] can be represented as the finite sequence {1, 2,3, 4, 5}. The boldface indicates the zero
index n = 0.

What about inverse Z transforms of irrational Z transforms? These can’t be evaluated using partial
fractions, but we can evaluate them via using other methods such as - expansion in power series,
inspection or integrating directly. We illustrate the power series method with a simple example:

Example. Consider the function W (z) = ez
−1

, |z| > 0. We calculate its inverse Z transform by
expanding,

W (z) = ez
−1

= 1 + z−1 +
z−2

2!
+
z−3

3!
· · · =

+∞∑
n=0

z−n

n!

By inspection, the inverse Z transform of W (z) is the sequence w[n] = u[n]
n! .

5.3.4 Eigensequences and the System Function

Consider an LSI system having impulse response h[n], which has a Z transform H(z) with a region of
convergence R. Consider that we provide an input x[n] = zn for some somplex number z ∈ R. We
can compute the output via convolution as follows:

y[n] =

+∞∑
k=−∞

h[k] · x[n− k] =

+∞∑
k=−∞

h[k] · zn−k = zn
+∞∑

k=−∞

h[k] · z−k

∴ y[n] = H(z) · x[n]

For a given complex number z, the expression H(z) is a constant, and hence, y[n] is a scalar multiple of
the input sequence x[n]. Such an input sequence x[n] is called an eigensequence and the correspond-
ing scalar multiple H(z) is known as the eigenvalue or the System Function. The system function
H(z) is the Z transform of the impulse response. It is the general form of the frequency response H(ω).
By the properties of the Z transform, we also have the input-output relation: Y (z) = H(z) ·X(z). We
now try to analyse the properties of a system in terms of its system function.

30

Digital Signal Processing -Ishan Kapnadak

5.3.5 System Properties - Causality and Stability

Consider that we wish to characterise the causality of a system based on its system function. We know
that the impulse response is zero for all negative indices (or h[n] = 0 ∀n < 0). We use this fact in
calculating the system function.

H(z) =

+∞∑
n=−∞

h[n] · z−n =

+∞∑
n=0

h[n] · z−n = h[0] + h[1]z−1 + h[2]z−2 · · ·

Clearly, this expression converges to h[0] for z → ∞. Thus, for a causal system, the contour z → ∞
must be a part of the region of convergence as the region of convergence R is a simply connected
region. For a rational system, this means that the region of convergence is the entire region to the
exterior of the maximum pole (provided there is no pole at infinity). If for a rational system, the
maximum magnitude of a pole is β then the region of convergence will be R : |z| > β if the system is
causal. To summarise, we state the following theorem.

Theorem 5.3.1. For a system to be causal, its region of convergence R must include the contour
z →∞.

Now, let us talk about stability. Recall that we had proved that the absolute summability of the impulse
response is a necessary and sufficient condition for stability. We use this to characterise stability. For
a rational system, the system function can give rise to two sequences - finite sequences (arising from
the quotient polynomial in partial fraction decomposition) and infinite sequences (arising from the
remainder in partial fraction decomposition). The finite sequences do not cause us any problem as
they are guaranteed to be absolutely summable. Hence, we are concerned only with the infinite
sequences. The infinite sequences can further be divided into two classes - right-sided exponentials
(having region of convergence |z| > |α|) and left-sided exponentials (having region of convergence
|z| < |α|. The absolute summability of the entire sequence is possible only if every term is individually
absolutely summable. For the poles having |α| > 1, we must have that the corresponding exponential
be left-sided to converge. Hence, the region of convergence must be |z| < |α| for all these poles. For
the poles having |α| < 1, we must have that the corresponding exponential be right-sided to converge.
Hence, the region of convergence must be |z| > |α| for all these poles. These two conditions can be
neatly summarised in the following theorem.

Theorem 5.3.2. For a rational system to be stable, the region of convergence R must include the
contour |z| = 1, i.e, the unit circle.

We now combine these two conditions to look at a rational, causal, stable system.

Theorem 5.3.3. For a rational system to be both causal and stable, all its poles must lie within the
unit circle.

Proof. We saw that the region of convergence for a causal system will be the region exterior to the
maximum pole of the system. If this system must be stable, it must include the unit circle in its region
of convergence. Hence, the unit circle lies to the exterior of the maximum pole and hence, all poles of
the system lie within the unit circle.

An interesting scenario is when a pole lies on the unit circle. We call such a system marginally stable.
This is because the system is more or less stable, but has only a few troublesome inputs. It is a good
exercise to find such inputs (Hint: start with the unit step sequence).

31

Digital Signal Processing -Ishan Kapnadak

6. Signal Flow Graph and System Realisations

6.1. The Direct Form I Graph

First, we show that rationality of the system function in a system translates very well into the im-
plementability of the system. If the system is rational, we can devise a method of the hardware and
software implementation of the system. We shall illustrate this now.
For a rational system, the System Function can be written in its pole-zero form as follows:

H(z) = κ
(z − β1)(z − β2) · · · (z − βM)

(z − α1)(z − α2) · · · (z − αN)

If the system is causal, we must have that
∣∣H(z)

∣∣ converges as z → ∞. Hence, M ≤ N . We can now
divide both the numerator and denominator by z−N . The system function can then be reduced to the
following form,

H(z) =

M∑
l=0

blz
−l

1−
N∑
k=1

akz
−k

We now use the relation Y (z) = H(z) ·X(z) or H(z) = Y (z)
X(z) .

Y (z)

X(z)
=

M∑
l=0

blz
−l

1−
N∑
k=1

akz
−k

or Y (z) =

 N∑
k=1

akz
−k

Y (z) +

 M∑
l=0

blz
−l

X(z)

Taking inverse Z transform:

y[n] =

N∑
k=1

ak · y[n− k] +

M∑
l=0

bl · x[n− l]

An equation of this form is known as a difference equation.The above equation tells us that for a
rational causal system, the output can be expressed in terms of the current input, the past inputs and
the past outputs only, which is exactly what us expected from a causal system.

We now discuss a graphical representation of the above result. First, we shall denote the term
∑M
l=0 bl ·

x[n− l] by Xc, the accumulation of inputs and the term
∑N
k=1 ak · y[n− k] by Yc, the accumulation of

outputs. Thus, y[n] = Xc + Yc. This relation is conveniently expressed graphically as shown in Figure
3. Such a representation is known as a Signal Flow Graph.
Evidently, there is a lot that’s going on in the graph. First, I shall explain certain things about the
graph. Each circle in the graph represents a node. All that a node does is hold a value. The directed
lines connecting two nodes are called edges. Edges represent a transfer of value from one node to
the other. For example, the edge connecting x[n] to the node on its right just copies the value x[n]
to the second node. Similarly, the second last node in the top row transfers or copies its value to the
node y[n]. When an edge has a constant written on top of it, the effect of this is to multiply the value
of the source node by the constant and transfer it to the destination node. For example, y[n −N] is
multiplied by aN and then transferred to the node to its left. When the multiplier is z−1, the effect

32

Digital Signal Processing -Ishan Kapnadak

x[n] Xc

x[n− 1]

x[n− 2]

x[n −M + 1]

x[n−M]

Xc + Yc

Yc y[n− 1]

y[n− 2]

y[n − N + 1]

y[n−N]

y[n]

z−1

b0

z−1

z−1

bM

bM−1

b2

b1

z−1

z−1

z−1

a1

a2

aN−1

aN

Figure 3: A Signal Flow Graph

is to delay the signal by one sample. Hence, the node containing x[n] is multiplied by z−1 giving us
x[n − 1] in the node below. When a node has multiple input edges, the effect is to add the values of
all the source nodes. As shown, the node getting inputs from Xc and Yc contains the value Xc + Yc.

It should now be clear as to what this graph is really doing. We first take the input x[n]. Delay it M
times and store the values x[n], x[n − 1] · · ·x[n −M]. We then multiply these by appropriate values
b0, b1 · · · bM and add them to store Xc. We follow the same procedure to calculate and store Yc. Then,
we add Xc and Yc to give us y[n] = Xc + Yc. To perform this operation for the next value of x[n], we
successively shift delay every sample by 1 unit and repeat this procedure.

The form of the graph shown in Figure 3 is known as the Direct Form I graph. This graph easily
translates into a hardware implementation of the system. We can perform the delay operations with
the help of registers or memory elements. Multiplication can be carried out by constant multipliers
and addition can be carried out by 2-input adders.

Let us consider a numerical example. Consider the system function:

H(z) =
8− 3z−1

1− 2z−1 + 5z−2

33

Digital Signal Processing -Ishan Kapnadak

To find the Direct Form I graph of this system, we first find the coefficients bl and ak. Evidently,
b0 = 8, b1 = −3 and a1 = 2, a2 = −5. The Direct Form I graph of this system is as follow.

x[n]

x[n− 1]

Xc Xc + Yc

Yc y[n− 1]

y[n− 2]

y[n]

z−1

−3

8

z−1

z−1

2

−5

Figure 4: Direct Form I Graph of the given system

Note: There are two redundant nodes present in the above graph - namely the one between x[n − 1]
and Xc and the one between y[n−2] and Yc. We can remove these nodes. A more concise and efficient
graph is shown below.

x[n]

x[n− 1]

Xc Xc + Yc

Yc y[n− 1]

y[n− 2]

y[n]

z−1 −3

8

z−1

z−1

2

−5

Figure 5: Simplified Direct Form I Graph of the given system

It is clear to see why such a graph is called a Signal Flow Graph. Such a graph simply represents the
flow of signals from the source nodes through the intermediate nodes and finally to the output nodes
along with the operations performed in the middle. I would encourage you to try devising a software
implementation of this system, i.e, a pseudo-code for arriving at the output from the input.

34

Digital Signal Processing -Ishan Kapnadak

6.2. The Direct Form II Graph

We can design a different form of the general rational causal LSI system by treating its system function
in a different way. Consider the general system function, H(z). We can break H(z) into two parts -
the one originating from the poles and the one originating from the zeros - and equivalently write it
as:

H(z) =


1

1−
N∑
k=1

akz
−k

 ·
 M∑
l=0

blz
−l

 = Hpole(z) ·Hzero(z)

This gives us another way of implementing the system, as shown in Figure 6.

x[n] y[n]

aN

aN−1

a2

a1

z−1

z−1

z−1 z−1

z−1

z−1

b1

b2

bM−1

bM

b0

Figure 6: An Alternative Signal Flow Graph

We can consider the entire system to be a cascade of the two systems Hpole(z) and Hzero(z) (known as
all-pole and all-zero systems respectively). Their impulse response will be a convolution of the impulse
responses of the pole and zero parts. heq[n] = hpole[n] ∗ hzero[n]. By associativity of convolution, we
have that x ∗ (hpole ∗ hzero) = (x ∗ hpole) ∗ hzero. Hence, the system acts like a cascade. The output
produced from the pole system is fed as an input to the zero system. This is the idea we have used in

35

Digital Signal Processing -Ishan Kapnadak

Figure 6. However, note that the 3rd and 4th columns are identical, hence redundant. We can further
simplify the structure by merging these two columns.

x[n] y[n]

aN

aN−1

a2

a1

z−1

z−1

z−1

b1

b2

bM−1

bM

b0

Figure 7: The Direct Form II Graph

This is known as the Direct Form II Graph. Note, the middle branch extends for max(N,M) nodes.
Figure 8 shows the Direct Form II Graph of the system we mentioned above. Note again, that there
are redundant nodes. Eliminating them, we arrive at Figure 9, the simplified Direct Form II Graph
of the system. We see that both the Direct Form I and II graphs utilise the same number of adders
and multipliers, but the Direct Form II is much more economical in delays. The Direct Form II uses
max(N,M) delays while the Direct Form I uses N +M delays.

36

Digital Signal Processing -Ishan Kapnadak

x[n] y[n]

2

z−1

z−1

−5

8

−3

Figure 8: Direct Form II Graph of the given system

x[n] y[n]

2

z−1

z−1

−5

8

−3

Figure 9: Simplified Direct Form II Graph of the given system

37

Digital Signal Processing -Ishan Kapnadak

6.3. Cascade and Parallel Decomposition

In the Direct Form II Graph, we expressed H(z) as a cascade of two systems Hpole(z) and Hzero(z).
Expanding on this idea, we could’ve as well expressed H(z) as a cascade of many such systems, or :

H(z) = H1(z) ·H2(z) . . . HQ(z)

where each Hi(z) includes some of the poles and/or some of the zeros. Such a decomposition of
H(z) is known as a Cascade Decomposition. Evidently, there is an enormous number of ways in
which we can perform this decomposition. Different decompositions or factorisations lead to different
realisations of the system. The basic rule is that if we have a pair of complex conjugate poles/zeroes
then we prefer keeping them together. A general cascade form of a system is shown below:

x[n] H1(z) H2(z) HQ−1(z) HQ(z) y[n]

Figure 10: A Cascade Form

Another method of decomposing H(z) is when we express it as a sum of terms. These terms are of
two forms:

1.
N1(z−1)

(1− αz−1)P

where α is a real pole of the system having multiplicity P and N1(z−1) is a polynomial in z−1

having degree less than P .

2.
N2(z−1)

(1− βz−1)P · (1− βz−1)P

where β, β are complex conjugate poles of the system having multiplicity P and N2(z−1) is a
polynomial in z−1 having degree less than 2P .

After determining these terms, we can write H(z) as a sum of these terms. Consequently, the system
can be implemented by putting all these sub-systems in parallel (Hint: use linearity of the Z Transform).
Such a decomposition is known as a Parallel Decomposition. The parallel form of the system is
shown in Figure 11. Note: while the decomposition of H(z) into parallel components is unique, each
term can further be expressed as a cascade in many forms. Hence, the form of the signal flow graph
shown in Figure 11 is sometimes also known as a Parallel-Cascade Form. Thus, we have encountered
the following forms of signal flow graphs:

1. Direct Form I Graph

2. Direct Form II Graph

3. Cascade Form

4. Parallel Form (or Parallel-Cascade Form)

38

Digital Signal Processing -Ishan Kapnadak

x[n]

H1(z)

H2(z)

Hi(z)

HQ−1(z)

HQ(z)

y[n]

Figure 11: A Parallel Form

39

Digital Signal Processing -Ishan Kapnadak

6.4. Difference Equations

Definition 6.4.1. Difference equations are equations involving are the discrete analogue of differential
equations, involving differences between successive values of a sequence.

In particular, we wish to focus on the solutions of a particular class of difference equations, known
as Linear Constant Coefficient Difference Equations or LCCDE’s. A general LCCDE can be
represented as :

y[n] =

N∑
k=1

aky[n− k] +

M∑
l=0

blx[n− l]

Suppose we wish to find the solution y[n], for a given input x[n], having a rational Z transform X(z).
If the LCCDE holds over all n, we could quite easily take Z transform on both sides of the difference
equation, giving us:

Y (z) = H(z) ·X(z) and y[n] = Z−1{Y (z)}

Here, H(z) is the system function we discussed above. As both H(z) and X(z) are rational, Y (z) is
also rational, hence its inverse Z transform is easily obtainable. However, we can only use this method
when the LCCDE holds for all n. We wish to analyse and solve this difference equation even when it
holds for a restricted interval of n.
Consider, for example the LCCDE:

y[n] =
1

2
y[n− 1] + y[n− 2] + 3x[n] for n ≥ 0

The input provided is x[n] = αn for n ≥ 0. In order to solve this LCCDE, we either need
y[−1]andy[−2], or we need the value of y[n] at any two points in the interval of interest - namely,
n ≥ 0.
Consider for a moment that we allow the LCCDE to hold for all n. Then, we can write:

H(z) =
3

1− 1
2z
−1 + z−2

and, we could extend x[n] to be x[n] = αn · u[n], which takes the same value as the original sequence
in our interval of interest n ≥ 0. The purpose of extending x[n] this way was to obtain a sequence
which has a rational Z transform while retaining the value of the sequence in the interval of interest.
We now consider inputs x[n] which can be extended in this way. Let x[n] be extended to the form∑
Q(n) · αn - namely, sum of exponentials multiplied by polynomials in n. After having done this,

we can solve the equation in the z-domain, by writing: Y (z) = H(z) ·X(z). We can find the poles of
Y (z) and subsequently, solve for y[n]. The solution of the difference equation essentially depends on
the following:

1. Poles of the system (H(z)) and their multiplicity.

2. Exponential factors in x[n] and the degree of the polynomial associated with each such factor.
(The coefficients of the polynomial itself are irrelevant).

Example. Consider that we wish to solve the equation y[n] = 1
3y[n−1] +x[n] for n ≥ 0, for the input

x[n] = (1
2)n forn ≥ 0. The corresponding system function is given by:

H(z) =
1

1− 1
3z
−1

The poles can be classified as follows:

1. System poles → at 1
3

40

Digital Signal Processing -Ishan Kapnadak

2. Input poles → at 1
2

These poles are distinct and do not have a non-null intersection. Hence, the overall response will have
two terms - one arising from the system pole and one from the input pole.
In general, the response will have 3 components:

1. Forced Response: contributed by the input poles alone

2. Natural Response: contributed by the system poles alone

3. Resonant Response: contributed by the common poles - or poles which are a part of both the
system and the input.

To illustrate these three components and how to solve such equations, we take up an example.
Example. Consider the system described by the following equations.

H(z) =
N(z−1)

(1− 1
3z
−1)2 · (1− 1

4z
−1)

=
N(z−1)

1− (α1z−1 + α2z−2 + α3z−3)

x[n] =

(
1

3

)n
+

(
1

5

)n
for n ≥ 0

We wish to solve the corresponding LCCDE for n ≥ 0. Note: H(z) is the system function we obtain
by letting the LCCDE hold for all n. The corresponding LCCDE can be written as:

y[n] = α1y[n− 1] + α2y[n− 2] + α3y[n− 3] +

M∑
l=0

blx[n− l]

The value of M and coefficients bl depend on the numerator N(z−1). First, let us group the poles:

1. System poles : (1
3 ,

1
3) , 1

4

2. Input poles : 1
3 ,

1
5

The system and input poles have a non-null intersection: 1
3 . Now, the final solution will consist of the

following components:

1. Forced response from the pole (1
5) of the form A1(1

5)n for n ≥ 0

2. Natural response from the pole (1
4) of the form A2(1

4)n for n ≥ 0

3. Resonant response from the pole (1
3) of the form (A3n

2 +A4n+A5) · (1
3)n for n ≥ 0

Note, the polynomial corresponding to the resonant response is of degree two because the corresponding
pole 1

3 has multiplicity three. Hence, the final solution of y[n] is

y[n] = A1

(
1

5

)n
+A2

(
1

4

)n
+ (A3n

2 +A4n+A5) ·
(

1

3

)n
for n ≥ 0

All that remains is finding the constants A1, . . . , A5.
We can solve the equation via the recurrence relation directly if we know the values of y[−1], y[−2]
and y[−3] or any three independent values of y[n] in the region of applicability. Note: the term
‘independent’ is important as redundant information will not help us.

At this point, it may strike your mind that we are able to solve for y[n] by having only three conditions
with us. But our expression for y[n] as the sum of exponentials gives the impression that we need five
equations to determine the five constants and hence y[n] itself. The explanation is that we need only
three conditions to solve completely for y[n] but doing so will allow us to describe the solution only

41

Digital Signal Processing -Ishan Kapnadak

through a recursive definition of y[n]. However, determining the five constants A1, . . . , A5 allows us to
obtain a closed-form expression for y[n].

Let us now try to obtain the constants A1, . . . , A5. We need five independent conditions to solve for
these constants. Three of these can be found using outputs y[0], y[1] and y[2]. Note, we can’t use y[3]
and y[4] as separate conditions as they are not independent of the initial three conditions. The last
two conditions by noting the following.

1. the forced response must satisfy the difference equation by itself.

2. the resonant response must satisfy the difference equation by itself.

That is, the resonant and forced components of the response and their corresponding input exponentials
must itself satisfy the difference equation. We can obtain the final two conditions this way. Consider

that X(z) = Y (z)
H(z) . A convenient way to arrive at the final conditions is to take the inverse transform.

We consider the term (H(z))−1 to act as an operator on y[n].

Define Ĥ =
1

H(z)
=

[(
1− 1

4
z−1

)
·
(

1− 1

3
z−1

)2
]

to be an operator.

Ĥ acts on the Z transform of y[n], Y (z) and then converts it to the discrete-time domain. By what we
said earlier, we must have Ĥy = x for the forced and resonant responses. The operator Ĥ is actually
a cascade of three operations:

1. y[n] 7→ y[n]− 1
4y[n− 1]

2. y[n] 7→ y[n]− 1
3y[n− 1] applied twice.

First, let us consider the forced response A1(1
5)n and the corresponding input (1

5)n. When we apply
the first operation on this, we get:

y[n]− 1

4
y[n− 1] = A1

(
1

5

)n
−A1

1

4

(
1

5

)n
= A1

(
1

5

)n [
1− 1

4
z−1

]
at z =

1

5

So, the sequence we obtain our cascading all three operations must be equal to the original input.
Hence,

A1

(
1

5

)n [(
1− 1

4
z−1

)
·
(

1− 1

3
z−1

)2
]

at z =
1

5

∴ A1 ·
(

1− 5

4

)
·
(

1− 5

3

)2

·
(

1

5

)n
=

(
1

5

)n
From the above equation, we can find A1. In general, the equation would be of the form :

A1 ·
(

1− 5

4

)
·
(

1− 5

3

)2

·
(

1

5

)n
=

 M∑
l=0

bl

(
1

5

)−l · (1

5

)n
Thus, we have found out A1. I will leave the calculations for the resonant response part to you. You
would interestingly find that only the highest degree term in n(A3) will survive. Hence, we have now
found out A3 and A1. We can find A2, A4 and A5 from the three output conditions and obtain the
complete closed form of the response y[n].

Hence, we have found a method of solving a general LCCDE. We can also divide our intervals as 0
to n0, n0 to n1, n1 to n2 and so on. The last few outputs of a certain range will act as the initial
conditions of the next range. Hence, we have practically solved the problem of piece-wise LCCDE’s,
i.e, systems which satisfy different LCCDE’s in different intervals. Now, we move on to the synthesis
of discrete-time systems.

42

Digital Signal Processing -Ishan Kapnadak

7. Synthesis of Discrete-Time Systems

7.1. The Ideal Filter

In this section, we will be designing discrete-time filters. A filter is essentially a system which performs
mathematical operations on a signal to enhance or suppress certain aspects of that signal. For example,
a low pass filter enhances the low frequencies of the signal while it suppresses the high frequencies.
The frequency response of the ideal low pass filter is shown in Figure 12

Figure 12: Frequency Response of an Ideal Low-Pass Filter

Clearly, it retains frequencies between −ωc and ωc and throws out the others. The impulse response
for this filter is given by:

h[n] =


sin(ωcn)

πn
n 6= 0

ωc
π

n = 0

The frequency response can be computed via the ‘standard’ way as:

H(ω) =

+∞∑
n=−∞

h[n] · e−jωn

This sum converges at all ω except ωc and −ωc. While, the ideal low pass filter certainly serves our
needs, it has problems associated with it. These problems forbid us from ever being able to realise an
ideal filter. These problems are:

• Infinite non-causality (we cannot achieve causality even by adding delays)

• Instability

• Irrationality (
∑
n h[n] · z−n is not a ratio of polynomials in z).

Irrationality is evident from the plot of the frequency response itself. In the given plot, the filter has
a flat stopband. The stopband is the region of frequencies which the filter blocks. In the ideal filter,
all these frequencies in the stopband have zero response (as expected). The problem is as follows: The
frequency response attains the value 0 at an infinite number of points (all the points in the stopband).
This would imply that the system has an infinite number of zeroes which cannot be the case if the
system were rational. The ideal low pass filter also has a flat passband. The passband is the region
of frequencies which the filter retains. All the frequencies in the passband have the same, constant
response (1). If we consider the function (H(ω) − 1), it consequently have infinite zeroes and hence
would be irrational. Thus, H(ω) would be irrational as well. The discontinuity of H(ω) at two points
forbids causality.

43

Digital Signal Processing -Ishan Kapnadak

We have shown that a realistic/realisable filter must have a continuous impulse response which has no
flat regions at all (even the smallest of flat regions would give rise to irrationality). We must then allow
for the response to have a range within which it can vary. We must also allow a range of frequencies
between which the frequency response transitions from the passband to the stopband. This gives us a
certain idea about what exactly do we want from a realistic filter

7.2. Specifications of a Real Filter

A realistic filter will be characterised by the following three parameters:

1. Passband Tolerance (δp)

2. Stopband Tolerance (δs)

3. Passband Edge (ωp)

4. Stopband Edge (ωs)

5. Transition band

These characteristics are illustrated in Figure 13.

Figure 13: Frequency Response of a Real Low-Pass Filter

Here, ωp is known as the passband edge and ωs is known as the stopband edge. The passband
tolerance gives an upper limit on how much variance is allowed in our frequency response in the
passband. Likewise, the stopband tolerance gives an upper limit on how much variance is allowed in
our frequency response in the stopband.

As engineers, our main objective is moving as close to the ideal filter as possible. For this, we need
δp, δs as small as possible and ωs and ωp as close as possible. An ideal filter has δs = 0, δp = 0 and
ωs = ωp

We shall mainly be dealing with four types of filters. They are:

1. Low Pass Filter: This filter retains frequencies below a certain threshold, and throws away the
others.

2. High Pass Filter: This filter retains frequencies above a certain threshold and throws away the
others.

3. Band Pass Filter: This filter retains frequencies only in a certain band of frequencies, and
throws away the others.

4. Band Stop Filter: This filter blocks frequencies in a certain band of frequencies and retains
all others.

44

Digital Signal Processing -Ishan Kapnadak

Figure 14: Frequency Response of a Real High-Pass Filter

Figure 15: Frequency Response of a Real Band-Pass Filter

Figure 16: Frequency Response for a Real Band-Stop Filter

We have already discussed the response diagram of the low pass filter. The response diagrams for the
other filters (with realistic specifications) are shown in Figure 14 , 15 and 16. Note: The response is
only shown for positive frequencies as the graph is symmetric.

Essentially, we have two choices for designing filters. We can have a filter which has an infinite length
impulse response. Such a filter is known as an Infinite Impulse Response Filter (IIR Filter).
The LCCDE characterising this system would be recursive. An IIR Filter would have both poles and
zeroes. There is a problem with designing IIR filters though. If the poles of the system lie too close
to the unit circle, numerical inaccuracies may cause them to migrate out of the unit circle and cause
the filter to be unstable.

The other type of filter is one which has a finite length impulse response. Such a filter is known as
Finite Impulse Response Filter (FIR Filter). The LCCDE characterising this system would be
non-recursive. Unlike the IIR Filter, an FIR Filter would be unconditionally stable.

45

Digital Signal Processing -Ishan Kapnadak

7.3. The Bilinear Transform

The basic strategy for designing discrete-time filters will be to design a corresponding analog filter and
somehow map this filter from the continuous time domain to the discrete time domain. Let us specify
the details of this mapping.

An analog filter in the continuous-time domain will be characterised by the system function Hanalog(s).
Here, s is the Laplace domain variable, the continuous-time analogue of z. To convert an analog filter to
a discrete-time filter, we need to replace s by a suitable function of z, in the system function Hanalog(s).
Once we have done this, we get the system function H(z) for the corresponding discrete-time filter.
We have already explained how to implement a given system function H(z). Hence, we now focus on
this map from s to z.

We need the map from s to z to preserve rationality. This is essential for implementation of the system.
A rational function in s must be mapped to a rational function in z. This is only possible if s is itself
a rational function of z.

The map must preserve stability of the system. We can comment on the stability of the systems be
seeing how our required map maps the s plane to the z plane. For stability in the z plane, we need
zn to decay or |z| < 1. Thus the stable region in the z plane is the interior of the unit circle. In the s
plane, we want est to decay. Consider that s = Σ + jΩ. Then,

est = e(Σ+jΩ)·t = eΣt · ejΩt

Thus, for est to decay, we need Σ < 0 or <(s) < 0. Thus the stable region in the s plane is the left
half plane. Thus, our map must satisfy the following correspondences:

1. The left half plane in the s plane ←→ Interior of the unit circle in the z plane

2. The right half plane in the s plane ←→ Exterior of the unit circle in the z plane

3. The imaginary axis in the s plane ←→ The unit circle in the z plane (or : when s = jΩ, |z| = 1)

Also, when we move from Ω : −∞ to Ω : +∞ in the s plane, we must move from ω = −π to ω = π in
the z plane. Thus, we also have the following correspondences:

1. Ω = 0←→ ω = 0

2. Ω→ −∞←→ ω → −π

3. Ω→∞←→ ω → π

We start off with the following idea:

z
1
2 − z− 1

2 = j · 2 sin
ω

2
when z = ejω

This satisfies a few of our required properties. When z is on the unit circle (z = ejω), s is on the
imaginary axis. However, this function isn’t a rational function of z. Furthermore, it maps the unit
circle only to the part of the imaginary axis restricted between −2 and 2. But, we want the unit circle
to be mapped to the entire imaginary axis (as ω ∈ (−π, π) → Ω ∈ (−∞,∞)). Let us consider the
tangent function instead of the sine function, as the tangent function spans the entire real number
axis. We must divide the above expression by cosine. This gives us the following map:

s =
1− z−1

1 + z−1

This map is known as the Bilinear Transform. We shall be using this map. It is easy to verify that
it satisfies all our requirements. To find the relation between the discrete-time frequency ω and the
continuous-time frequency Ω, we put z = exp(jω) and s = jΩ. This gives us the following relation:

jΩ =
1− e−jω

1 + e−jω
= j

sin ω
2

cos ω2

46

Digital Signal Processing -Ishan Kapnadak

∴ Ω = tan
ω

2

Consider the frequency response for a low pass filter as shown below. When we apply the bilinear
transform, we get the following transformations

• π 7−→ ∞

• ωs 7−→ Ωs

• ωp 7−→ Ωp

• −π 7−→ −∞

• −ωs 7−→ −Ωs

• −ωp 7−→ −Ωp

Also, the specifications of the filter are preserved upon applying the bilinear transform. That is,
the passband and stopband tolerances are carried over directly from the discrete-time domain to the
continuous-time domain. The frequency response for the corresponding analog filter is as follows.

7.4. Design Strategy and Low-Pass Filter Design

In this section, we lay down our strategy for designing a general discrete-time filter and start with
designing Analog Low-Pass filters

Step 1: Convert the discrete time specifications to the corresponding analog filter specifications via the
transformation Ω = tan ω2 .

Step 2: Suppose we have to design a low-pass filter, then we design the corresponding analog low-pass
filter. If our original filter is not a low-pass filter, then we use analog frequency transformations
to convert the analog filter to a corresponding analog low-pass filter. In any case, we will only
be designing analog low-pass filters. For other filters, we look for an equivalent low-pass filter.

Step 3: Once we have designed an analog low-pass filter (which may correspond to any of the four filters),

we have its system function Hanalog(s). We then use the bilinear transform s = 1−z−1

1+z−1 to get the
corresponding discrete-time system function Hdiscrete(z).

Step 4: Finally, we can implement Hdiscrete(z) using Direct Form I, Direct Form II, Cascade Form or
Parallel Form.

We now focus on designing an Analog Low-Pass Filter. Consider that the specifications of the filter
are as follows:

• Passband edge : Ωp

• Stopband edge : Ωs

• Passband tolerance : δp

• Stopband tolerance : δs

By “designing” an analog low-pass filter, we mean to find a functionHL(s) such that when we substitute
s = jΩ, the magnitude of the resulting function,

∣∣HL(jΩ)
∣∣ obeys the above specifications.

We can design different kinds of filters to satisfy these specifications. A standard way to classify these
filters is to analyse how the function

∣∣HL(s)
∣∣ behaves in the passband and the stopband. We can have

two kinds of variations for each bands - monotonic and oscillatory. These give rise to four different
kinds of filters. We shall study them one by one.

47

Digital Signal Processing -Ishan Kapnadak

7.5. The Butterworth Filter

The Butterworth filter has a monotonic passband and a monotonic stopband. Before designing the
filter, we must understand what we require out of our filter function. The basic three requirements are
that the filter function must be

1. stable

2. causal

3. rational

To design the filter according to the specifications, we are only concerned with the magnitude of
HL(s). Consider that the filter function is HL(s). The frequency response is then given by substituting
s = jΩ. Thus, the frequency response is HL(jΩ). We define the effective transfer magnitude function

as
∣∣HL(jΩ)

∣∣2 = HL(jΩ) · HL(jΩ). If the coefficients of HL(s) are real, then we have that HL(jΩ) =
HL(−jΩ). Extending this to all s, we define the Magnitude Analog function as HL(s) ·HL(−s).
For the magnitude analog function, for every pole/zero at s = s0, we also have a pole/zero at s = −s0.
To ensure stability, we assign all the left-half plane poles to the function HL(s) and all the right-half
plane poles to the function HL(−s).

To meet the required specifications, British engineer Stephen Butterworth came up with the following
function:

HL(s) ·HL(−s) =
1

1 +

(
s

jΩc

)2N

On substituting s = jΩ, we get the frequency response as

1

1 +

(
jΩ

jΩc

)2N
=

1

1 +

(
Ω

Ωc

)2N

Here, Ωc is the point where
∣∣HL(jΩ)

∣∣2 = 1
2 . Hence, Ωc is called the half-power point. N corresponds to

the rate at which the magnitude analog function drops. In practical scenarios, N corresponds to the
amount of resource we must invest to build the corresponding filter. Designing a Butterworth filter

now reduces to choosing the correct Ωc, N which meet the specifications. First, note that
∣∣HL(jΩ)

∣∣2
is always between 0 and 1. While, designing filters, we focus only on one side of the Ω axis, as the
frequency response is symmetric.

Let us apply the condition for the passband. For the pass band, we want

1

1 +

(
Ω

Ωc

)2N
≥ (1− δp)2 all over the passband.

As the frequency response decreases with increasing Ω, we essentially only want this condition to hold
at the passband edge. If it is true at the passband edge, then it holds all over the passband. Thus,

1

1 +

(
Ωp
Ωc

)2N
≥ (1− δp)2

1

(1− δp)2 ≥ 1 +

(
Ω

Ωc

)2N

or

(
Ωp
Ωc

)2N

≤ 1

(1− δp)2
− 1

48

Digital Signal Processing -Ishan Kapnadak

We denote 1
(1−δp)2 − 1 as Dp (Dp ≥ 0). Hence, we get:

(
Ωc
Ωp

)2N

≥ 1

Dp

Using similar arguments, for the stopband, we get

1

1 +

(
Ωs
Ωc

)2N
≤ δ2

s or

(
Ωs
Ωc

)2N

≥ 1

δ2
s

− 1

We denote 1
δ2s
− 1 as Ds (Ds ≥ 0). Hence, we get

(
Ωs
Ωc

)2N

≥ Ds

Multiplying the two inequalities, we get (
Ωs
Ωp

)2N

≥ Ds

Dp

Taking log on both sides, we get

N ≥
log
(
Ds
Dp

)1/2

log
(

Ωs
Ωp

)
This is the design condition for N . N is also known as the filter order. To find the minimum order
required, we can use the ceiling function.

Nmin =

⌈
log
(
Ds
Dp

)1/2

log
(

Ωs
Ωp

) ⌉

We now determine Ωc. From the two inequalities mentioned above, we can conclude the following
result.

Ωp

D
1/2N
p

≤ Ωc ≤
Ωs

D
1/2N
s

This gives us a design condition for Ωc given a particular N . Note: If we keep Ωc closer to Ωp, then
we are over-designing the stopband and vice-versa. Thus, we can choose the position of Ωc according
to our needs.

We now consider the function for all s as follows

HL(s) ·HL(−s) =
1

1 +

(
s

jΩc

)2N

Note that this function has no non-trivial zeroes. Let us look for the poles. If s is a pole then, the
denominator must be zero. Therefore,

1 +

(
s

jΩc

)2N

= 0 =⇒
(

s

jΩc

)2N

= −1 = ej(2k+1)π

49

Digital Signal Processing -Ishan Kapnadak

∴
s

jΩc
= ej(2k+1)π

Thus, the poles are given by:

sk = jΩc · exp

{
j

(
π

2N
+
kπ

N

)}
Thus, all poles are on a circle centred at the origin having a radius of Ωc. We can show that the
poles corresponding to k = 0, . . . , N − 1 are the left-half plane poles. Also, if N is even, then we
have that the poles corresponding to k = 0, . . . , N2 − 1 are complex conjugates of those corresponding

to k = N
2 , . . . , N − 1. If N is odd, then there is a real pole at −π and the others occur as complex

conjugates. Hence, the poles always occur as complex conjugates and the function has real coefficients.
We can thus construct our analog system function as:

HL(s) =
κ

(s− s1)(s− s2) . . . (s− sN)

where s1, . . . sN are the left-half plane poles and κ is a constant. We additionally need that HL(0) = 1.
Hence,

HL(0) =
κ

(−1)N
N∏
i=1

si

= 1

Note: the indices i and k are different (shifted by one, to be precise). It is not to difficult to show that
the denominator is ΩNc (Hint: The phases average out to π and the magnitude of every pole is Ωc).
Thus, we have κ = ΩNc . Hence, our final analog system function is:

HL(s) =
ΩNc

N∏
i=1

(s− si)

Finally, we use the Bilinear Transform on the above function to obtain our discrete-time system for
the given low pass filter. Hence, this completes our analysis of the Butterworth Filter.

7.6. The Chebyshev Filter

7.6.1 Chebyshev Polynomials

The idea of Chebyshev polynomials arises from multi-angle trigonometric identities. Consider the
following identities:

• cos 2θ = 2 cos2 θ − 1

• cos 3θ = 4 cos3 θ − 3 cos θ

• cos 4θ = 8 cos4 θ − 8 cos2 θ + 1

In general, cosNθ = TN (cos θ), where TN (·) is a polynomial. These polynomials are known as Cheby-
shev polynomials (of the first kind). For x, we define the N th Chebyshev polynomial as

TN (x) =


cos(N arccosx) if |x| ≤ 1

cosh(N arcoshx) if x ≥ 1

(−1)N cosh(N arcosh(−x)) if x ≤ −1

Properties. Following are some properties of the Chebyshev polynomials.

1. We can define the Chebyshev polynomials recursively via the relation TN+1(x) = 2xTN (x) −
TN−1(x), with T0(x) = 1, T1(x) = x.

50

Digital Signal Processing -Ishan Kapnadak

2. The degree of TN (x) is N and the leading coefficient is 2N−1.

3. Odd and even powers never occur together in a Chebyshev polynomial

4. The Chebyshev polynomials TN (·) and TM (·) satisfy TN (TM (x)) = TM (TN (x)) = TNM (x).

7.6.2 Designing the Chebyshev Filter

The Chebyshev filter has an equiripple (oscillatory) passband and a monotonic stopband. For the
Chebyshev filter, we define HL(s) such that

HL(jΩ) ·HL(−jΩ) =
1

1 + ε2 · T 2
N

(
Ω

Ωp

)
Now, we apply the passband condition.

1

1 + ε2 · T 2
N

(
Ω

Ωp

) ≥ (1− δp)2 all over the passband

The magnitude of oscillations of the Chebyshev polynomials is 1. Hence, this condition reduces to

ε2 ≤ 1

(1− δp)2
− 1 =⇒ ε2 ≤ Dp

For x > 1, TN (x) is monotonically increasing. Hence, we apply the stopband condition only at the
stopband edge. This gives us

1

1 + ε2 · T 2
N

(
Ωs
Ωp

) ≤ δ2
s

Simplifying, we get

ε2 · T 2
N

(
Ωs
Ωp

)
≥ 1

δ2
s

− 1 =⇒ ε2 · T 2
N

(
Ωs
Ωp

)
≥ Ds

Multiplying the two inequalities, we get

TN

(
Ωs
Ωp

)
≥

(
Ds

Dp

)1/2

Also, note that Ωs ≥ Ωp, thus Ωs/Ωp ≥ 1. Therefore, we get

N ≥
arcosh

(
Ds
Dp

)1/2

arcosh
(

Ωs
Ωp

)
Note: This is the same expression as the Butterworth filter with the function log replaced by the
function arcosh. For a given set of specifications, we have that NB ≥ NC where NB is the filter
order for the Butterworth filter and NC is the filter order for the Chebyshev filter (Hint: Compare the
functions log and arcosh).

Now, we extend this function to all s, giving us

HL(s) ·HL(−s) =
1

1 + ε2 · T 2
N

(
s

jΩp

)

51

Digital Signal Processing -Ishan Kapnadak

The poles are given by

T 2
N

(
s

jΩp

)
= − 1

ε2
=⇒ TN

(
s

jΩp

)
= ±j

ε
=⇒ cos

N arccos

(
s

jΩp

) = ±j
ε

Let arccos
(

s
jΩp

)
= Ak + jBk giving us cos(NAk + jNBk) = ± jε .

cosNAk cos jNBk − sinNAk sin jNBk = ±j
ε

cos jNBk = coshNBk ; sin jNBk = j sinhNBk

∴ cosNAk coshNBk − j sinNAk sinhNBk = ±j
ε

cosNAk coshNBk = 0 ; sinNAk sinhNBk = ±1

ε

∴ cosNAk = 0 =⇒ Ak =
(2k + 1)π

2N

Ak =
(2k + 1)π

2N
=⇒ sinNAk = ±1 =⇒ sinhNBk = ±1

ε

Consider Bk to be positive, giving us Bk = 1
N arsinh 1

ε .

∴
sk
jΩp

= cos(Ak + jBk) = cosAk coshBk − j sinAk sinhBk

∴ sk = Ωp sinAk sinhBk + jΩp cosAk coshBk = Σk + jΩk

Σk = (Ωp sinhBk) · sinAk ; Ωk = (Ωp coshBk) · cosAk

∴

(
Σk

sinhBk

)2

+

(
Ωk

coshBk

)2

= Ω2
p using sin2Ak + cos2Ak = 1

Thus, the poles of the system lie on an ellipse with major axis along imaginary axis and minor axis
along real axis. Consider that s1, . . . sN are the poles in the left-half plane. Thus, we construct HL(s)
as follows

HL(s) =
κ

(s− s1)(s− s2) . . . (s− sN)

To find the constant, we use the value of HL(0).

Case 1: N is even. In this case, we have T 2
N (0) = 1. Thus,

κ
N∏
i=1

(−si)
=

1√
1 + ε2

We find κeven from here.

Case 2: N is odd. In this case, we have T 2
N (0) = 0. Thus,

κ
N∏
i=1

(−si)
= 1

We find κodd from here.

52

Digital Signal Processing -Ishan Kapnadak

Finally, we define

HL(s) =
κ

N∏
i=1

(s− si)

where κ is defined as

κ =

{
κeven N is even

κodd N is odd

Finally, we apply the Bilinear Transform which gives us our discrete-time function.

We shall not be discussing the remaining two types of filters as their analysis is fairly involved. The
filter with a monotonic passband and equiripple stopband is called an Inverse Chebyshev Filter
or a Chebyshev Type II Filter. The filter with both bands equiripple is called an Elliptic Filter
or a Cauer Filter or a Zolotarev Filter. The frequency responses for the four types of Low-Pass
Filters is as shown in Figure 17.

Figure 17: Frequency responses of the four types of filters. [Image Source: Wikipedia]

7.7. Analog Frequency Transformations

So far, we have only designed the analog low-pass filter. To design the other three types of filters, we
use analog frequency transformations. We denote the low-pass filter s variable as sL and the general
filter s variable as s. A frequency transformation is then a function which maps a function of s to sL
or F (s) 7−→ sL. Again, we require this map to map the imaginary axis to the imaginary axis, left-half
plane to the left-half plane, right-half plane to the right-half plane and it should preserve rationality.
We sequentially these transformations for all three of the other filters.

7.8. High Pass Filter

To convert the high-pass filter to a low-pass filter, we use the following map (verify that it is indeed
valid):

sL =
Ωh
s

where Ωh is a constant. Substituting s = jΩ and sL = jΩL, we get the relation:

ΩL = −Ωh
Ω

53

Digital Signal Processing -Ishan Kapnadak

We can see that as Ω moves from 0+ to +∞, ΩL moves from −∞ to 0− and as Ω moves from −∞ to
0−, ΩL moves from 0+ to +∞. Thus, the passband region of the low-pass filter is the stopband region
of the high-pass filter and vice versa. We have converted our high pass filter into a low pass filter. We
now focus on only one side of the frequency spectrum (as the map is an odd map). The other filter
characteristics - namely, the passband and stopband tolerances remain the same. The point Ωp in the
high-pass filter is mapped to the point ΩpL in the low-pass filter. By convention, we choose Ωh = Ωp.

This gives us the passband edge in the low-pass filter to be ΩpL =
∣∣∣−Ωh

Ωp

∣∣∣ = 1. Thus, we wish to design

a low-pass filter having passband and stopband tolerances as δs, δp (same as the high-pass filter) and

having passband edge 1 and stopband edge
Ωp
Ωs

(Note: Ωs < Ωp as these are specified for a high-pass

filter). Once we design this filter, we get its system function HL(sL). We then use sL =
Ωp
s to find

HH(s). We can then use the bilinear transform and implement the high pass filter.

7.9. Bandpass Filter

To convert the bandpass filter to a low pass filter, we use the following map (verify that it is indeed
valid) :

sL =
s2 + Ω2

0

Bs

where Ω0 and B are constants. Substituting s = jΩ and sL = jΩL, we get the relation

ΩL =
Ω2 − Ω2

0

BΩ

Note:
dΩL
dΩ

=
1

B
+

Ω2
0

BΩ2
> 0 ∀ Ω

Thus, ΩL is a monotonically increasing function of Ω. As Ω moves from 0+ to Ω−0 , ΩL moves from −∞
to 0−. As Ω moves from Ω+

0 to +∞, ΩL moves from 0+ to +∞. Also, Ω 7→ ΩL is an odd mapping,
hence we focus only on the positive side of Ω (Ω = 0 is a point of singularity). Let the passband
edges and stopband edges of the original bandpass filter be Ωp1 ,Ωp2 ,Ωs1 and Ωs2 . We choose Ωo to be
somewhere in between Ωp1 and Ωp2 . This allows the maps of the passband edges (ΩLp1 and ΩLp2) to
be on opposite sides of ΩL = 0. For convenience, we want these points to be exactly negative of each
other. Hence,

ΩLp1 = −ΩLp2 =⇒
Ω2
p1 − Ω2

0

BΩp1
=

Ω2
p2 − Ω2

0

−BΩp2

∴ Ω2
0 = Ωp1 · Ωp2

For this value of Ω0, we are ensured that Ωp1 and Ωp2 are mapped to mutually negative points. Now,
the constant B only helps us to scale. We use this constant ingeniously to make our passband edge
equal to 1 in the low-pass filter. That is, Ωp1 maps to −1 and Ωp2 maps to +1. This gives us,

B = Ωp2 − Ωp1

Thus, B is the bandpass width of the filter. With these constants, we have the following maps from Ω
to ΩL.

• 0 7−→ −∞

• Ωs1 7−→ ΩLs1

• Ωp1 7−→ −1

• Ω0 7−→ 0

54

Digital Signal Processing -Ishan Kapnadak

• Ωp2 7−→ +1

• Ωs2 7−→ ΩLs2

• +∞ 7−→ +∞

A stopband from 0 to Ωs1 in the bandpass filter corresponds to a stopband from −∞ to ΩLs1 in the
transformed filter. A passband from Ωp1 to Ωp2 in the bandpass filter corresponds to a passband from
−1 to +1 in the transformed filter. A stopband from Ωs2 to +∞ in the bandpass filter corresponds to a
stopband from ΩLs2 to +∞ in the transformed filter. Hence, the transformed filter is indeed a low-pass
filter. However, the stopband edges on the positive and negative side (ΩLs2 and ΩLs1 respectively)
may not be equal and opposite. Hence, we choose the more ‘stringent’ of the two edges, that is, one
which gives a smaller transition band. Thus, using the map mentioned with the mentioned values of
Ω0 and B, gives us a low-pass filter having the following specifications :

1. Passband edge : 1

2. Stopband edge : min
{
|ΩLs1 | ,|ΩLs2 |

}
3. Passband and Stopband Tolerances and their nature (monotonic or equiripple) same as the

original Bandpass Filter

We then design a low-pass filter with these specifications, using the Butterworth/Chebyshev/Inverse
Chebyshev/Elliptic Approximations. This gives us the low-pass system function HL(sL). We then
substitute sL = (s2 + Ω2

o) · (Bs)−1 with the required values of Ωo and B to get the corresponding
bandpass function HBP (s). We then use the bilinear transform to get the corresponding discrete time
system function, which we can implement.

7.10. Bandstop Filter

The map for a bandstop filter is the reciprocal of the map for a bandpass filter. Thus, we have

sL =
Bs

s2 + Ω2
0

Substituting s = jΩ and sL = jΩL gives us the relation

ΩL =
BΩ

Ω2
0 − Ω2

While this map appears to be similar to the one for a bandpass filter, the corresponding frequency
transformation is quite different. Note :

dΩL
dΩ

= B
Ω2

0 + Ω2

(Ω2
0 − Ω2)2

Thus, the derivative is positive for all Ω 6= Ω0. At Ω0, the derivative diverges, as does ΩL. There is an
infinite jump at the point Ω = Ω0 (a point of singularity). We only focus on the positive region of Ω.
The region between 0 and Ω0 on the Ω axis is mapped to the region between 0 and +∞ on the ΩL axis
(in the same order). The region between Ω0 and +∞ on the Ω axis is mapped to the region between
−∞ and 0 on the ΩL axis (in the same order). In short as Ω increases from 0 to Ω0, ΩL increases from
0 to +∞. When Ω crosses the point Ω0, ΩL ‘jumps’ from +∞ to −∞. Then, as Ω increases from Ω0

to +∞, ΩL increases from −∞ to 0.

Like before, we want the passband edges to map to mutually negative points. This gives us essentially
the same equation. Thus, Ω0 =

√
Ωp1 · Ωp2 . We also make these edges to be ±1, giving us B =

Ωp2 −Ωp1 . Like before, we use the more stringent stopband edge. Using these values of Ω0 and B, we
get a low-pass filter with the following specifications:

55

Digital Signal Processing -Ishan Kapnadak

1. Passband edge : 1

2. Stopband edge : min
{
|ΩLs1 | ,|ΩLs2 |

}
3. Passband and Stopband Tolerances and their nature (monotonic or equiripple) same as the

original Bandpass Filter

We then design a low-pass filter with these specifications, using the Butterworth/Chebyshev/Inverse
Chebyshev/Elliptic Approximations. This gives us the low-pass system function HL(sL). We then
substitute sL = (Bs) · (s2 + Ω2

0)−1 with the required values of Ω0 and B to get the corresponding
bandstop function HBS(s). We then use the bilinear transform to get the corresponding discrete time
system function, which we can implement.

8. Finite Impulse Response Filter Design

8.1. Linear Phase Response

We now move to designing FIR Filters. An FIR Filter has two significant advantages.

1. It is unconditionally stable.

2. It has a better phase response than an IIR Filter.

The first point makes sense as a finite length impulse response will certainly be absolutely summable.
What about the second point? We first talk about the ideal, most desirable phase response (the phase
response of an ideal filter). We categorise the phase response of an ideal filter as Linear Phase. We
first demonstrate this idea in the continuous-time domain. Consider the a sinusoid A0 cos(Ω0t + φ0).
A linear phase response is one which adds a linear phase term to the argument of the sinusoid. That
is, this sinusoid is replaced by A0 cos(Ω0t + Ω0τ + φ0) = A0 cos(Ω0(t + τ) + φ0). This is equivalent
to shifting the sinusoid by τ units of time. The important point is that this shift is independent of
the frequency Ω0. Linear phase is special as all sinusoids are shifted equally on the t-axis. For a
discrete-time system with linear phase, the frequency response is given as

H(ω) = HR(ω) · ejΦ(ω) ; HR(ω) ≥ 0 ∀ ω Φ(ω) = ωτ where τ is preferably an integer

Here, HR(ω) is the magnitude response and Φ(ω) is the phase response. We first deal with the
continuous-time case. Here, the frequency response would be

Hanalog(Ω) = HR(Ω) · ejΩτ HR(Ω) ≥ 0 ∀ Ω

However, we shall permitHR(Ω) to be negative (as long as it is real). Thus, forHR(Ω) ∈ R ∀ Ω, HR(Ω)·
exp(jΩτ) represents pseudo-linear phase. We add the prefix ‘pseudo’ as a negative magnitude
response would add a phase change of π. Hence, a pseudo-linear phase response would show jumps of
π at some places.

The discrete-time version of pseudo-linear phase is given by

H(ω) = HR(ω) · ejωτ τ ∈ Z
2

or, τ is a multiple of half

Let h[n] be the impulse response, obtained by the Inverse DTFT of H(ω). We could regard h[n] as
samples of h(t), being sampled at the integers, where h(t) is the Inverse Continuous-Time Fourier
Transform of the analogous system function HA(Ω). We denote the magnitude response as HR(Ω)
and its inverse continuous-time Fourier transform as hR(t). Note that hR(t) will be a real and even
function if and only if HR(Ω) is a real and even function. We have the relation :

HR(Ω) = HA(Ω) · e−jΩτ =⇒ hR(t) = h(t− τ)

56

Digital Signal Processing -Ishan Kapnadak

Hence, −τ is a point of symmetry in h(t). If τ is an integer, then we can choose the point of symmetry
as one of the samples and then take an equal number of samples on either side of the point of symmetry,
giving us an odd number of total samples. If τ is a half-integer, then we choose an equal number of
samples on either side of the point of symmetry, the first ones being at a distance of half each. This
gives us an even number of total samples. If τ were an integer, the DTFT would be of the form:

HR(ω) · e−jωD

where HR(ω) is real and even. Similarly, if τ were a half integer, the DTFT would be of the form:

HR(ω) · e−jω(D− 1
2)

Similar arguments apply for real and odd signals. Here, the DTFT would be of the form

j ·HR(ω) · e−jωD

where HR(ω) is real and odd. This is also a form of pseudo-linear phase where jHR(ω) can contribute
a phase change of π

2 or −π2 .

8.2. Truncation and Windowing

The problem of filter design is essentially to approximate the (infinitely non-causal, unstable, irrational)
ideal filter by a (causal, stable, rational) discrete-time system - a real filter. This problem is similar to
representing an irrational number (say π) in a calculator or a computer. This is done by truncating
and rounding off the decimal expansion of π. 3.14159 · · · is often truncated and rounded off as 3.142.
A similar approach is applied to FIR Filter Design. Recall that the impulse response for the ideal filter
is given by

hideal[n] =

{
sinωcn
πn if n 6= 0

ωc
π if n = 0

We will now truncate this sequence up to a desired length in order to design an FIR Filter. While
truncating, we wish to keep symmetry/anti-symmetry intact to retain pseudo-linear phase. We then
perform a generalised “rounding off” to the truncated response. This is done by multiplying the
truncated response by an appropriate sequence. This sequence is known as a Window Sequence and
this process is called windowing.

While retaining an odd number of samples, we consider zero to be one of the samples and collect an
equal number of samples on either side of zero. Consider for example that we wish to retain 21 samples
in the impulse response of the ideal filter. This is naturally done by retaining the samples from −10
to +10. There are two reasons to do this:

1. These central 21 samples have the highest magnitude and thus contribute the most to the response

2. Retaining samples from −10 to +10 allows us to retain symmetry.

If we wish to retain an even number of samples, we then observe the underlying continuous time signal.
That is, we consider

sinωcn

πn
=

sinωct

πt
sampled at t = n (integers) for odd number of samples

For retaining an even number of samples, we retain two samples at 1
2 units on either side of zero.

Then, we take an equal number of on either side of these two samples at a distance of one unit each.
For example, for retaining 20 samples, we sample at −9 1

2 ,−8 1
2 · · · −

1
2 ,

1
2 · · · 8

1
2 , 9

1
2 .

Truncating a sequence from −N to +N is equivalent to multiplying this sequence with 1 from −N
to +N and 0 elsewhere. The process of windowing allows us to modify exactly how we multiply
or modify this truncated part. A window sequence allows us flexibility to modify and change the
chopped/truncated sequence according to our needs. Following are some common examples of windows
:

57

Digital Signal Processing -Ishan Kapnadak

1. Rectangular Window. This window sequence is 1 between −N to +N and zero everywhere
else. Multiplication by a rectangular window is equivalent to a simple truncation of the sequence.
We represent this window sequence graphically as follows:

2. Triangular Window. This window is represented as follows. There is a linear decay in magni-
tude about the point of symmetry.

3. Cosine Window. This is as shown

Consider any general window sequence v[n]. A window sequence must satisfy the following conditions

1. v[n] must be symmetric (to maintain symmetry/anti-symmetry of the response)

2. v[n] must be time-limited (as we need a finite impulse response)

For a given window sequence v[n], the truncated response is htr[n] = hideal[n] · v[n]. However, the
truncated response is still non-causal. But since it is now finite, we can make it causal by shifting
or delaying the sequence by an appropriate number of samples. This delayed, causal sequence is the
impulse response of the FIR Filter and is denoted as hFIR[n].

Let the DTFT of hideal[n] be Hideal(ω) and the DTFT of v[n] be V (ω). The DTFT of htr[n] is then
given by (recall that this would be a periodic convolution of the two DTFT’s)

HTR(ω) =
1

2π

∫ π

−π
Hideal(λ) · V (ω − λ)dλ

Let us first deal with a rectangular window. The DTFT of a rectangular window (HR(ω)) from −N
to +N is given by

HR(ω) =

+N∑
n=−N

e−jωn

This can be simplified using the formula for the sum of a geometric progression.

∴ HR(ω) = ejωN

(
1− e−jω(2N+1)

1− ejω

)
On simplifying, we get

HR(ω) =
sin

2N + 1

2
ω

sin
ω

2

The graph for HR(ω) is shown in Figure. Although we derived this for a rectangular window, such
a graph is typical of many window sequences. HR(ω) has one main-lobe centered around ω = 0 and
has side-lobes on either side. The most significant side-lobe is the one nearest to the main-lobe. Now,
let us find HTR(ω). An intuitive way to do this is by moving the shape of HR(ω) from left to right,
scaling it by the value of the ideal frequency response at every point and then finding the total area.
We divide our study into five critical regions:

1. In the first region, the main-lobe of HR(ω) is centered far at the left (starting from −π). In
this case, the main-lobe remains outside the passband and is multiplied by zero, nullifying its
contribution. Hence, all the area is contributed only by the side-lobes. Further, as the main-lobe
moves rightward, side-lobes of alternating positive and negative area move into and out of the
passband. Hence, the response here will be an oscillating response with a very small average
value (roughly zero). This region represents the first stopband.

2. In the second region, the main-lobe is just at the edge of the passband. As the main-lobe enters
the passband, a large positive area is contributed. This causes the response to rise from a low
value to a high value. This region represents the first transition band.

58

Digital Signal Processing -Ishan Kapnadak

3. In the third region, the main-lobe is completely within the passband and moves from the left
passband edge to the right one. Here, the average value of the response does not change as
the most significant contribution (the one from the main-lobe) remains intact. However, the
movement of the side-lobes causes oscillation about this high value. This region represents the
passband.

4. In the fourth region, the main-lobe is just at the edge of the passband. As the main-lobe leaves
the passband, a large positive area is subtracted from the response. This causes the response to
fall back to a low value from a high value. This region represents the second transition band.

5. In the fifth region, the main-lobe of HR(ω) is centered far at the right (ending at π). In this case,
the main-lobe remains outside the passband and is multiplied by zero, nullifying its contribution.
Hence, all the area is contributed only by the side-lobes. Further, as the main-lobe moves
rightward, side-lobes of alternating positive and negative area move into and out of the passband.
Hence, the response here will be an oscillating response with a very small average value (roughly
zero). This region represents the second stopband.

Overall, the truncated response is shown in Figure 18.

Figure 18: Truncated Response for a Rectangular window.

A few important points:

• The width of the transition band is determined by the width of the main-lobe

• The extent of oscillations in the passband and stopband are equal as they are caused by the same
side-lobes

• The extent of oscillations in the passband and stopband are determined by the area of the most
significant side-lobe.

Let us find the main-lobe width of the rectangular window. The main-lobe width will be the separation
between the first two nulls in

∣∣VR(ω)
∣∣. This is given by

sin
2N + 1

2
ω = 0 =⇒ ω = ± 2π

2N + 1

Thus, the main-lobe width is given by

∆R =
4π

2N + 1

To get closer to an ideal filter, we must reduce both the main-lobe width as well as the side-lobe
area. Clearly, we can reduce the main-lobe width by increasing N (while we’ve only shown this for
the rectangular window, this is true, in general, for all windows). Consider that N →∞. In this case,
the main-lobe width, ∆R tends to zero. However, it can be shown that the side-lobe area tends to a
non-zero constant. Thus, there is a fundamental limit for the side-lobe area which we cannot improve
upon even by investing infinite resources. Thus, the ripples in the passband and stopband are lower
bounded. This is a manifestation of the Gibb’s Phenomenon of Fourier Series.

59

Digital Signal Processing -Ishan Kapnadak

Another interesting thing to note is that the main-lobe width and side-lobe area are in conflict with
one another. We want the truncated frequency response to be concentrated around the zero frequency.
However, we also want to minimise the resources invested - or reduce the length of the truncated re-
sponse. These two objectives are in fundamental conflict with one another. We cannot make something
narrow in both the time domain and the frequency domain. This is an interesting manifestation of the
Uncertainty principle. The uncertainty principle limits or forbids the simultaneous localisation in
both the time and frequency domain.

Consider that we have fixed N . This gives a fundamental bound on the spread around zero frequency.
We can “implement” this spread by either increasing the main-lobe width or increasing the side-lobe
area. Hence, there is a fundamental compromise between these two quantities. The obvious question
that arises - is there a window which optimises both these parameters for a given N? Before we deal
with this question, let us list down a few important windows. Here, we consider the window to be zero
in all regions where the window is not specified.

1. Rectangular Window. This is sometimes also known as the boxcar or the Dirichlet window.
This window sequence is defined by

v[n] = 1 0 ≤ n ≤ N

2. Triangular Window. The triangular window is a symmetric window with its peak at N
2 and

linearly decaying to either side. This window sequence is given by

v[n] = 1−
∣∣∣∣2n−NL

∣∣∣∣ 0 ≤ n ≤ N

where L can be N , N + 1 or N + 2. For L = N , the window is also known as the Bartlett
window or the Fejér window.

3. Parzen Window. This is also known as the de la Vallée Poussin Window. Define L = N+1.
We define this sequence between −L2 and L

2 as follows

v[n] =


1− 6

(
2n
L

)2 (
1− 2|n|

L

)
0 ≤|n| ≤ L

4

2
(

1− 2|n|
L

)3
L
4 ≤|n| ≤

L
2

4. Welch Window. The Welch window consists of a single parabolic section. It is defined as

v[n] = 1−
(

2n−N
N

)2

0 ≤ n ≤ N

5. Power of Sine Windows. A general power of sine window is given as

v[n] = sinα
(
πn

N

)
0 ≤ n ≤ N

For α = 0, we get the Rectangular window. For α = 1 we get the Sine Window and for
α = 2 we get the Hann Window.

6. Hamming Window. This is also known as a raised cosine window (as the average of the cosine
is slightly above zero). It is defined as

v[n] =
25

46
− 21

46
· cos

(
2πn

N

)
0 ≤ n ≤ N

60

Digital Signal Processing -Ishan Kapnadak

7. Blackman Window. The Blackman window can be considered to be a refinement of the
Hamming window, as it adds a harmonic to the sequence, The Blackman window is defined as

v[n] = a0 − a1 cos

(
2πn

N

)
+ a2 cos

(
4πn

N

)
0 ≤ n ≤ N

With a0 = 1−α
2 , a1 = 1

2 and a2 = α
2 . The exact Blackman window is defined with

a0 =
7938

18608
; a1 =

9240

18608
; a2 =

1430

18608

A good approximation to this uses α = 0.16.

8. Nuttall Window. For four constants a0, a1, a2 and a3 such that a0 +a1 +a2 +a3 = 1, we define
the window

v[n] = a0 − a1 cos

(
2πn

N

)
+ a2 cos

(
4πn

N

)
− a3 cos

(
6πn

N

)
0 ≤ n ≤ N

For different values of the constants, we get the following three windows

(a) Nuttall Window

(b) Blackman-Nuttall Window

(c) Blackman-Harris Window

9. Tukey Window. The Tukey window is also known as a cosine-tapered window. It is a com-
bination of the rectangular window and the Hann window. Define L = N + 1. Consider an α
between 0 and 1. We define the Tukey window as

v[n] =


1
2

[
1− cos

(
2πn
αL

)]
0 ≤ n < αL

2

1 αL
2 ≤ n ≤

N
2

v[N − n] N
2 ≤ n ≤ N

For α = 0, this becomes a rectangular window and for α = 1, this becomes a Hann window.

8.3. The Kaiser Window

We talked about the ‘compromise’ between the main-lobe width and the side-lobe area. The window
which provides the optimal compromise is known as the Kaiser Window or the Kaiser-Bessel
Window. This window is based on the Bessel-function (specifically, the zeroth-order modified Bessel
function of the first kind). We define this function as follows

I0(x) = 1 +

∞∑
l=1

(x/2)l
l!

2

The Kaiser window is then defined as

v[n] =

I0

[
β

√
1−

(
n−α
α

)2]
I0[β]

0 ≤ n ≤ N

where β > 0 is the shape parameter and α = N
2 . For β = 0, the Kaiser window reduces to the

rectangular window. A smaller β corresponds to a smaller main-lobe. By increasing N , we can
modulate the transition band without affecting the ripple.

61

Digital Signal Processing -Ishan Kapnadak

Determination of the parameters β and N is done via empirical equations. Empirical equations do not
have any analytic or theoretical background but are derived through observations and curve-fitting.
Consider that we wish to design a low-pass filter having passband and stopband edges ωp and ωs.
Define ∆ω = ωs−ωp. Let the passband and stopband tolerances be δp and δs. Note that the passband
and stopband ripple values are equal. Hence, a filter designed by this method will have equal tolerances.
Hence, we choose the more stringent of the two tolerances. Define δ = min{

∣∣δp∣∣ ,|δs|}. We define

A = −20 log10 δ

Based on the value of A, we choose β as

β =


0.1102(A− 8.7) A > 50

0.5842(A− 21)0.4 + 0.07886(A− 21) 21 ≤ A ≤ 50

0 A < 21

For given values of A and ∆ω, we choose N as

N =
A− 8

2.285∆ω

This completes the design of the required Kaiser window. Let us consider a numerical example.

Example. Consider a low-pass filter having the following specifications:

• ωp = 0.4π

• ωs = 0.6π

• δp = 0.01

• δs = 0.001

For this filter, we compute δ = 0.001 and ∆ω = 0.2π. Further, we can compute A to be

A = −20 log10(0.001) = 60

As A > 50, we compute β as

β = 0.1102(60− 8.7) = 5.653

Further, using A and ∆ω, we compute N as

N =
60− 8

2.285× 0.2π
= 37

This completes the design of the respective Kaiser window. We can also compute α = 37
2 = 18.5.

Further, we can approximate the cutoff frequency as

ωc =
ωs + ωp

2
= 0.5π

This gives us the truncated response

htr[n] =


sin 0.5π(n− 18.5)

π(n− 18.5)
·

I0

5.653

√
1−

(
n− 18.5

18.5

)2


I0[5.653]
0 ≤ n ≤ 37

0 otherwise

62

Digital Signal Processing -Ishan Kapnadak

8.4. Lattice Structures

8.4.1 The Lattice Equations

We had previously discussed realisation of systems through the direct forms, the cascade form and
the parallel form. Another important method of system realisation is through lattice structures or
through lattice synthesis. We generally use the term lattice to denote a regular periodic repetition of
some fundamental constituent or unit. The meaning here is the same.

We define a single unit in a lattice structure as a two input - two output unit. This unit is shown in
Figure 19.

El(z)

Ẽl(z)

+

+

El+1(z)

Ẽl+1(z)
z−1

−Kl+1−Kl+1

Figure 19: A Basic Unit of a Lattice Structure. Kl+1 is a constant, and l denotes the stage of the
lattice.

This graph can be equivalently represented via the following two equations

El+1(z) = El(z)−Kl+1z
−1Ẽl(z)

Ẽl+1(z) = z−1Ẽl(z)−Kl+1El(z)

We make the first two inputs equal. That is, E0(z) = Ẽ0(z). Further, we divide all terms by E0(z)(=

Ẽ0(z)). This gives us

Al(z) =
El(z)

E0(z)
; Ãl(z) =

Ẽl(z)

Ẽ0(z)

Thus, we get the equations
Al+1(z) = Al(z)−Kl+1z

−1Ãl(z)

Ãl+1(z) = z−1Ãl(z)−Kl+1Al(z)

Proposition 8.4.1. For l ≥ 1, the terms Al(z) and Ãl(z) are related as

Ãl(z) = z−lAl(z
−1)

Proof. We prove this using mathematical induction. Let us first establish the basis. Clearly, A0(z) = 1

and Ã0(z) = 1. Putting l = 0 in the original equations, we get

A1(z) = 1−K1z
−1; Ã1(z) = z−1 −K1

Thus,
Ã1(z) = z−1A1(z−1)

Now, let us assume that the proposition holds true for some n. Thus, we have

Ãn(z) = z−nAn(z−1) for some n

63

Digital Signal Processing -Ishan Kapnadak

Using the two equations, we have

An+1(z) = An(z)−Kn+1z
−1 · z−nAn(z−1)

Ãn+1(z) = z−1 · z−nAn(z−1)−Kn+1An(z)

First, we replace z by z−1 in the first equation and then multiply by z−(n+1). On simplifying, we get

Ãn+1(z) = z−(n+1)An+1(z−1)

Hence, the result follows from mathematical induction.

8.4.2 Realising FIR Systems via a Lattice Structure

Consider an FIR system function given by

H(z) =

N∑
m=0

bm · z−m

We use a N -stage lattice to realise this system. Further, we define Al and Ãl as

Al(z) =

l∑
m=0

al,m · z−m; Ãl(z) =

l∑
m=0

al,l−m · z−m

Also, we have the equation
Al+1(z) = Al(z)−Kl+1z

−1Ãl(z)

The maximum power of z−1 in Al and Ãl is l. Hence, we compare the coefficients of z−(l+1) on both
sides. Thus, the coefficient of z−(l+1) in Al+1(z) is equal to −Kl+1 times the coefficient of z−l in Ãl(z).

Further, the coefficient of z−l in Ãl(z) is equal to the coefficient of z0 in Al(z). We can also prove that
the coefficient of z0 in Al(z) is 1 for all l (Hint: Use induction). Thus, we get

the coefficient of z−(l+1) in Al+1(z) = −Kl+1

Let us now return our focus to the system function H(z). We have

H(z) = AN (z) =

N∑
m=0

bm · z−m; KN = −bN

We use the method of Backward Recursion to realise FIR systems. That is, we wish to obtain Al from
Al+1. We have

Al+1(z) = Al(z)−Kl+1z
−1Ãl(z)

Substituting the values of Al and Ãl, we have

l+1∑
m=0

al+1,m · z−m =

l∑
m=0

al,m · z−m −Kl+1

l∑
m=0

al,l−m · z−(m+1)

Comparing coefficients for m = 1, . . . , l, we get

al+1,m = al,m −Kl+1 · al,l+1−m

To construct backward recursion, we first replace m by l + 1 −m in the above equation. Then, we
eliminate al,l+1−m. This gives us the following relation

al,m =
al+1,m +Kl+1 · al+1,l+1−m

1−K2
l+1

64

Digital Signal Processing -Ishan Kapnadak

provided K2
l+1 6= 1.

For example, consider l = 4. We know a5,1, a5,2, a5,3 and a5,4. Also, K5 = −a5,5. Thus we can find
a4,1, a4,2, a4,3 and a4,4 via the following equations

a4,1 =
a5,1 +K5 · a5,4

1−K2
5

a4,2 =
a5,2 +K5 · a5,3

1−K2
5

a4,3 =
a5,3 +K5 · a5,2

1−K2
5

a4,4 =
a5,4 +K5 · a5,1

1−K2
5

Once, we have these coefficients, we can further proceed from l = 4 to l = 3 by using the coefficients
a4,1, a4,2 and a4,3 and setting K4 = −a4,4. Thus, we can go all the way up to l = 1.

Note: This lattice structure only works when all the zeroes of the system are inside the unit circle.
This is equivalent to saying that the modulus of K at every stage must be strictly less than one. Let
us demonstrate this via a numerical example.

Example. Consider that the system function of an FIR Filter is given by

H(z) = 1 +
3

4
z−1 +

1

2
z−2 +

1

4
z−3

Here, the maximum power of z−1 is 3. Hence, we define N = 3. We start with the last stage, that is,
l = 2. To find K3, we have

A3(z) = H(z) = 1 +
3

4
z−1 +

1

2
z−2 +

1

4
z−3

Thus, we get

K3 = −1

4

Now, to find K2, we use the relation

A2(z) =
A3(z) +K3 · Ã3(z)

1−K2
3

Thus,

A2(z) =
16

15
·

[(
1 +

3

4
z−1 +

1

2
z−2 +

1

4
z−3

)
− 1

4

(
z−3 +

3

4
z−2 +

1

2
z−1 +

1

4

)]
Simplifying, we get

A2(z) = 1 +
2

3
z−1 +

1

3
z−2

Thus, we get

K2 = −1

3

Now, to find K1, we use the relation

A1(z) =
A2(z) +K2 · Ã2(z)

1−K2
2

65

Digital Signal Processing -Ishan Kapnadak

Thus,

A1(z) =
9

8
·

[(
1 +

2

3
z−1 +

1

3
z−2

)
− 1

3

(
z−2 +

2

3
z−1 +

1

3

)]
Simplifying, we get

A1(z) = 1 +
1

2
z−1

Thus, we get

K1 = −1

2

Also, we have A0(z) = 1. The lattice realisation for this system is shown in Figure 20

x[n] +

+

+

+

+

+

y[n]

z−1

1
2

1
2

z−1

1
3

1
3

z−1

1
4

1
4

Figure 20: Lattice Realisation for the given problem.

8.4.3 Generalising to IIR Systems

Generalising this concept to IIR Systems requires a simple change of designation. We rearrange the
first equation and keep the second equation intact. This gives us

El(z) = El+1(z) +Kl+1 · z−1 · Ẽl(z)

Ẽl+1(z) = z−1Ẽl(z)−Kl+1El(z)

In a sense, our inputs are now EN and Ẽ0. We represent this via the signal flow graph shown in Figure
21

El+1(z)

Ẽl+1(z)

El(z)

Ẽl(z)

−Kl+1 Kl+1

z−1

Figure 21: Lattice Structure for IIR Systems

For the sake of convenience, we mask all the connections shown and represent this unit as a single
‘black box’ as shown in Figure 22.
We can use this unit recursively to construct the signal flow graph as shown in Figure 23

This type of recursive implementation can be used only for all-pole systems. For all-pole systems,
the numerator of H(z) is 1 and we set the denominator = AN (z). For pole-zero systems, we use

66

Digital Signal Processing -Ishan Kapnadak

El+1(z)

Ẽl+1(z)

El(z)

Ẽl(z)

Kl+1

Figure 22: Lattice Structure with a ‘Black Box’

EN (z)

ẼN (z)

EN−1(z)

ẼN−1(z)

KN

E1(z)

Ẽ1(z)

E0(z)

Ẽ0(z)

K1

Figure 23: Lattice Structure for an IIR System

EN (z)

ẼN (z)

EN−1(z)

ẼN−1(z)

KN

E1(z)

Ẽ1(z)

E0(z)

Ẽ0(z)

K1

+ + +

output

vN vN−1
v1 v0

Figure 24: Lattice-Ladder Structure for an IIR System

a modified structure known as a Lattice-Ladder Structure. A general lattice-ladder structure is
shown in Figure 24.

67

Digital Signal Processing -Ishan Kapnadak

To find the coefficients vi, we first define CM (z) to be the numerator of H(z). We use the same method

of backward recursion to find CM−1(z), . . . , C1(z) and C̃M−1(z), . . . , C̃1(z). Then, we have the relation

CM (z) =

M∑
m=0

vmC̃m(z)

From here, we can find the values of the constants v0, . . . , vM . Let us consider a numerical example.

Example. Consider the system function

H(z) =
1 + 2z−1 + 3z−2 + 2z−3

1 + 0.9z−1 − 0.8z−2 + 0.5z−3

We have N = 3 and M = 3. We define A3(z) = 1 + 0.9z−1 − 0.8z−2 + 0.5z−3 and C3(z) = 1 + 2z−1 +
3z−2 + 2z−3. Using the same method as the previous example, we get

K3(A) = −0.5; K2(A) = 1.67; K3(A) = −1.62

K3(C) = −2; K2(C) = −1

3
; K1(C) = −0.75

C̃3(z) = z−3 + 2z−2 + 3z−1 + 2; C̃2(z) =
1

3
+

4

3
z−1 + z−2; C̃1(z) =

3

4
+ z−1

Thus, we have

1 + 2z−1 + 3z−2 + 2z−3 = v0 + v1 · C̃1(z) + v2 · C̃2(z) + v3 · C̃3(z)

On comparing the coefficients, we get

v3 = 2; v2 = −1; v1 = −13

4
; v0 = −107

48

The realisation of this system is shown in Figure 25.

x[n]

K3 = −0.5 K2 = 1.67 K1 = −1.62

+ + +

y[n]

v3 = 2 v2 = −1 v1 = − 13
4 v3 = − 107

48

Figure 25: Lattice-Ladder Structure for the given IIR System.

68

Digital Signal Processing -Ishan Kapnadak

9. The Discrete Fourier Transform

9.1. Discretising the Frequency Axis

So far, we have discretised time. This was done so that we could work with analog signals on computers,
store these signals etc. However, even after discretising time, we cannot work with the frequencies as
they still form a continuum. To deal with this problem, we introduce the idea of discretising the
frequency axis as well. The obvious way to do this is to take the DTFT of a sampled sequence and
sample the frequency axis of this DTFT.

Consider a sequence x[n] which has a DTFT X(ω). No, we wish to discretise the ω-axis. Consider
that we retain only N discrete points on the ω-axis, located as follows. Here, it is convenient for us
to take ω ranging from 0 to 2π instead of −π to π. We divide the interval [0, 2π] into N sub-intervals
and take one sample at the edge of each interval. This gives us the samples

ω =
2π

N
k k = 0, . . . , N − 1

Now, to reconstruct a sequence from its DTFT, the integral in the inverse DTFT is replaced by a sum.
This gives us a sequence

x̃[n] =

N−1∑
k=0

X

(
2π

N
k

)
ej(

2π
N kn)

Another way to construct the sequence x̃[n] is to use the ‘Dual’ of the sampling theorem. For the
original analog signal, we took the Fourier transform of the samples. We translated the spectrum in
−π to π by every multiple of 2π and added all these translated spectra. For this case, we use a similar
approach. The repeating interval (akin to the sampling interval) in this case would be

2π

∆ω
=

2π
2π/N

= N

Thus, x̃[n] is obtained by translating x[n] by every multiple of N and adding all these together. Hence,
we have

x̃[n] = λ0

∞∑
r=−∞

x[n+ rN]

We also allow for a constant of normalisation λ0.
Consider the sequence given by

x[n] = . . .5, 2, 7, 4, 2 . . .

Here, the sequence x[n] is zero everywhere else. The bold value indicates the zero index (n = 0).
Consider that we choose N = 3. For this N , we can calculate x̃[n] using the above formula. x̃[n] turns
out to be the sequence

x̃[n] = · · · 9, 4, 7,9, 4, 7, 9, 4, 7, · · ·

x̃[n] is periodic with period 3. This is true in general as well. x̃[n], in general, will be periodic with
period N . We can see this property from the original definition itself.

x̃[n] = λ0

∞∑
r=−∞

x[n+ rN]

x̃[n+N] = λ0

∞∑
r=−∞

x[n+ (r + 1)N] = λ0

∞∑
r′=−∞

x[n+ r′N]

∴ x̃[n+N] = x̃[n]

We define the support of a sequence as the extent of the sequence. That is, the support of a sequence
is the range in which all the non-zero values of the sequence occur. An interesting thing to note is that

69

Digital Signal Processing -Ishan Kapnadak

when we used N = 3 on the above sequence, the sequence x̃[n] which we obtained was “corrupted” or
its values were different than the original sequence. This is due to time-domain aliasing.

If a sequence has an infinite support then aliasing is bound to occur. Consider a sequence x[n] has a
finite support. Without loss of generality, assume that this support is 0 to P − 1 (or P samples). If we
choose N ≥ P , then x̃[n] = x[n] in the support of x[n]. That is, time-domain aliasing will not occur
for N ≥ P . This is because the translated samples do not overlap with the original samples. However,
if we choose N < P , aliasing will occur as the translated samples overlap with the original ones. In the
above example, we have P = 5 and we chose N as 3, which is less than 5. Hence, aliasing occurred.
If we chose N = 5, then this aliasing wouldn’t have occurred. An interesting point: A sequence with
finite support is equivalent to a band-limited signal.

9.2. Formulating the Discrete Fourier Transform

Consider a sequence x[n] having a finite support 0 to N−1. Consider that we also discretise the ω-axis
into the same number of intervals as the support of this sequence. Thus, we have

X(ω) =

N−1∑
k=0

x[n] · e−j(
2π
N kn) evaluated at ω =

2π

N
k

Consider the set of N sequences

ej(
2π
N kn) k = 0, . . . , N − 1

Previously, we let n vary over all the integers. This led us to consider these sequences as infinite-
dimensional vectors. Now, the support is only N integers long. Hence, we restrict n to vary from 0 to
N −1. We can now think of these sequences as N N -dimensional vectors. It is not to difficult to prove
that these vectors form an orthogonal basis for this space of sequences. The magnitude (or norm) of
each sequence is

√
N . We have the equations

X(ω)|ω= 2π
N k =

N−1∑
n=0

x[n] · e−j(
2π
N kn) =

N−1∑
n=0

x[n] · ej(
2π
N kn)

x[n] =

N−1∑
k=0

X

(
2π

N
k

)
· ej(

2π
N kn)

Both these equations must be divided by
√
N . However, division by

√
N is not very convenient. Hence,

we combine both the
√
N ’s on a single side. We define a sequence X[k] = X

(
2π
N k
)
. This gives us

X[k] =

N−1∑
n=0

x[n] · e−j(
2π
N kn)

The sequence X[k] is known as the Discrete Fourier Transform (DFT) of the sequence x[n].
Subsequently, the Inverse DFT of X[k] is given by

x[n] =
1

N

N−1∑
k=0

X[k] · ej(
2π
N kn)

9.3. Convolution and Circular Convolution

Consider two finite support sequences - x[n] having a support 0 to M − 1 and h[n] having a support
0 to L− 1. Let the DTFT’s of these two sequences be X(ω) and H(ω) respectively. Convolving these
two sequences would give us a sequence y[n] = x[n] ∗ h[n] having a support 0 to M + L − 2. Hence,

70

Digital Signal Processing -Ishan Kapnadak

to reconstruct y[n] properly from its DTFT samples, we must take at least M + L − 1 points in its
DTFT. Thus, if we wish to compute y[n] via its DFT, then we have

y[n] = IDFTN (DFTN (x[n]) ·DFTN (h[n]))

where N ≥M + L− 1. The operation DFTN (·) indicates an N -point DFT.

Consider, without loss of generality, that the two sequences x[n] and h[n] have equal length (if they
do not then lengthen the shorter one by appending zeroes on either side - a method known as zero-
padding). To construct the convolved sequence y[n], we must take at least a 2N − 1-point DFT.
However, consider that we construct a different sequence ỹ[n] by taking only an N -point DFT. That
is,

ỹ[n] = IDFTN (DFTN (x[n]) ·DFTN (h[n]))

For example, consider N = 3. Let x[n] = [x0, x1, x2] and h[n] = [h0, h1, h2]. The linear convolution
y[n] = x[n] ∗ h[n] is given by the sequence

y[n] = [x0h0, x1h0 + x0h1, x2h0 + x1h1 + x0h2, x2h1 + x1h2, x2h2]

Let ỹ[n] be given by [ỹ0, ỹ1, ỹ2]. The sequence ỹ[n] would then be obtained by translating this sequence
y[n] by every multiple of 3 and adding up all these sequences. This gives us

ỹ0 = x0h0 + x2h1 + x1h2

ỹ1 = x1h0 + x0h1 + x2h2

ỹ2 = x2h0 + x1h1 + x0h2

This sequence ỹ[n] is called a circular convolution of the sequences x[n] and h[n]. We denote this
as ỹ[n] = x[n] ~ h[n]. It is known as a circular convolution because we can obtain it quite neatly
using two concentric circles. First, we arrange the points of the sequence x[n] on the outer circle in a
clockwise sense. This circle behaves as the stator. Next, we arrange the points of the sequence h[n]
on the inner circle in an anticlockwise sense with the points x0 and h0 aligned. This circle behaves as
the rotor. To obtain ỹ0, we multiply every corresponding term on the two circles and add up all the
terms. This gives us the first term ỹ0 = x0h0 +x2h1 +x1h2. Next, we move the rotor clockwise by one
step and repeat this process. In this way, we obtain all points of ỹ[n]. The three steps of this process
are shown for the above example. This can be easily generalised to N points.

Another way to perform this operation is to replicate the sequence x[n], so that it is a periodic sequence
with period N . Call this sequence x̃[n]. The circular convolution x[n] ~ h[n] is then the convolution
of x̃[n] with h[n].

Example. Let x[n] be the sequence [1, 2, 3] and h[n] be the sequence [1, 1, 1]. Here, N = 3. Consider
that we compute the sequence y[n] as follows

y[n] = IDFTM (DFTM (x[n]) ·DFTM (h[n]))

for different values of M . The results are as follows

y[n] =


[6, 6, 6] M = 3

[4, 3, 6, 5] M = 4

[1, 3, 6, 5, 3] M = 5

[1, 3, 6, 5, 3, 0] M = 6

Clearly, M = 3 gives us the circular convolution while M = 5, 6 gives us the linear convolution.

71

Digital Signal Processing -Ishan Kapnadak

10. The Fast Fourier Transform Algorithm

Recall the expressions for the N -point DFT and inverse DFT

X[k] =

N−1∑
n=0

x[n] · e−j 2π
N nk

x[n] =
1

N

N−1∑
k=0

X[k] · e−j 2π
N nk

The Fast Fourier Transform is an efficient algorithm to compute the DFT of an N -point sequence. The
algorithm uses the principle of “Divide and Conquer”. We discuss this algorithm for a general N and
illustrate it for N = 8. First, we only consider N to be a power of two, i.e, N = 2p for some integer
p. For the given example, p = 3. The basic principle is as follows - the computation of a 2p-point
DFT can be broken down into the computation of two 2p−1-point DFT’s along with some additional
computation. For N = 8, we compute the 8-point DFT by computing two 4-point DFT’s along with
some additional computation. This ‘division’ into two parts can be done in two ways

• Taking alternate samples in n (This is equivalent to partitioning in k)

• Partitioning n (This is equivalent to taking alternate samples in k)

We now discuss both these approaches.

10.1. Formulating the FFT Algorithm

Let N = 2p. We first deal with the first approach. This is known as a Decimation-in-Time structure.
We divide the sequence x[n] into odd and even samples. That is, we construct two new sequences x[2n]
(even) and x[2n+1] (odd) for n = 0, . . . , N2 −1. For N = 8, the two sequences are x[2n] = [x0, x2, x4, x6]
and x[2n + 1] = [x1, x3, x5, x7] (Note: xi represents x[i]). We denote the term exp

(
−j 2π

N k
)

as W k
N .

These are known as twiddle factors.

X[k] =

N−1∑
n=0

x[n] ·Wnk
N =

N/2−1∑
n=0

x[2n] ·Wnk
N/2 +

N/2−1∑
n=0

x[2n+ 1] · e−j 2π
N ·(2n+1)k

The first term is the N
2 -point DFT of the even samples. Denote this as G[k]. For the second term, we

have
N/2−1∑
n=0

x[2n+ 1] · e−j 2π
N ·(2n+1)k = W k

N

N/2−1∑
n=0

x[2n+ 1] ·Wnk
N/2

The term to the right is the N
2 -point DFT of the odd samples. Denote this as H[k]. Thus, we have

X[k] = G[k] +W k
N ·H[k]

when k = 0, . . . , N−1. Note that G[k] and H[k] are only computed for k = 0, . . . , N2 −1. We take G[k]

and H[k] to be periodic with period N
2 . Hence, G[4] = G[0], H[4] = H[0] and so on. We represent this

decomposition via the signal flow graph shown in Figure 26.
We can further break the N

2 point DFT’s into two N
4 -point DFT’s. We also use the fact that W k

N/2 =

W 2k
N . This structre is shown in Figure 27.

We now use this decomposition recursively. The base case is a one-point DFT, which amounts to doing
nothing. The complete signal flow graph is shown for N = 8 in Figure 28. We use the following two
identities

W
N/2
N = −1; W

r+N/2
N = −W r

N

72

Digital Signal Processing -Ishan Kapnadak

Figure 26: Representing an N -point DFT as two N
2 -point DFT’s with additional computation. [Image

Source: Oppenheim and Schafer.]

Figure 27: Representing an N -point DFT as four N
4 -point DFT’s with additional computation. [Image

Source: Oppenheim and Schafer.]

This leads to alternate additions and subtractions in G[k] and H[k]. These alternate additions and
subtractions constitute a butterfly-like structure in signal flow graphs. Hence, these are called butterfly
computations.

Note that to correctly implement this algorithm, we must ensure correct ‘arrangement’ of n at every
stage. To find out the initial configuration, we represent n in the binary format. Note that alternating

73

Digital Signal Processing -Ishan Kapnadak

Figure 28: Complete signal flow graph for the decimation-in-time structure. W i
N are the multipliers

for different k. [Image Source: Oppenheim and Schafer.]

even and odd samples in n can be represented by a cyclic shift of bits from the regular ordering of
n. As this cyclic shift is carried out 3 times for N = 8, we represent the n’s in the thrice-shifted bit
format. Note that this is the same as reversing the bits. Hence, for any general N , n is written in
bit-reversed indexing. For N = 8, the initial arrangement of n is as follows

n = [0, 4, 2, 6, 1, 5, 3, 7]

10.2. Computational Complexity

We have devised the FFT algorithm, but is it really efficient? We now compare its computational
complexity with a direct computation of the DFT. Note: We consider multiplication by 1 and −1 to
be trivial multiplications and they do not contribute to computational complexity.

For N = 8, the FFT algorithm involves 5 non trivial multiplications and 24 additions. We represent
this as the tuple (5, 24). The direct computation of the DFT uses the formula

X[k] =

7∑
n=0

x[n] · e−j 2π
8 nk

The number of additions is 8× 7 = 56. To find out the number of non trivial multiplications is a bit
more tricky. Multiplication by exp−j 2π

N nk will be trivial if and only if nk is a multiple of 4. To find
the number of pairs (n, k) which cause a trivial multiplication, we construct the following table, shown
in Table 1.

n \ k 0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

Table 1: Table for (n, k). The shaded boxes denote trivial multiplications.

74

Digital Signal Processing -Ishan Kapnadak

Hence, the number of non-trivial multiplications is 32. Thus, the tuple corresponding to the direct
computation is (32, 56). This is much worse than the FFT tuple.

In general, for N = 2p, we have N
2 non trivial multiplications and N additions per stage, and we have p

stage. While, for the direct computation, we have N(N − 1) additions and N2 multiplications. Hence,
the complexity for the FFT algorithm is O(N logN) while the complexity for the direct computation
is O(N2). Hence, the FFT is much more efficient.

The second approach involves partitioning n and picking alternate k. This is known as a Decimation-
in-Frequency structure. It is not to difficult to show that the signal flow graph for this method is
the same as the decimation-in-time structure but with all the arrows reversed. We say that the graph
for the decimation-in-frequency structure is the transpose of the graph for the decimation-in-time
structure. We can also prove that the computational complexity remains unchanged. The complete
signal flow graph for the decimation-in-frequency structure is shown for N = 8 in Figure 29. Note:
We could perform a bit-reversed indexing here as well.

Figure 29: Complete signal flow graph for the decimation-in-frequency structure. [Image Source:
Oppenheim and Schafer.]

An interesting thing to note is that the FFT algorithm can also be used to calculate the Inverse DFT.
The expression remains the same for both cases, except for an additional factor of 1

N .

10.3. Computing Convolutions using the FFT Algorithm

Consider that we wish to compute the convolution of a 15-point sequence x1[n] with a 14-point sequence
x2[n]. The number of points in the convolved sequence y[n] will be 28. We can compute the convolution
in two ways :

• Direct Computation:

y[n] =

∞∑
k=−∞

x1[n] · x2[n− k]

• Computation through FFT:

y[n] = IFFTN
(
FFTN (x1[n]) · FFTN

)
where FFTN and IFFTN are the N -point FFT and Inverse FFT algorithms respectively.

75

Digital Signal Processing -Ishan Kapnadak

How do these two methods compare in terms of computation required? We now only focus our
attention on the number of multiplications required. The direct computation involves 15 × 14 = 210
multiplications. While using FFT, we must choose N such that N ≥ 28. The nearest power of 2 is 32,
hence we use a 32-point FFT. The sequence x1[n] is padded with 17 zeroes and the sequence x2[n] is
padded with 18 zeroes. The number of multiplications required are 32 × log2 32 = 32 × 5 for each of
the two inputs and the output. Hence, the total number of multiplications required is 32× 15 = 480.
This seems to be larger than the direct computation. However, note that more than half of both our
sequences are zeroes. Hence, many of the multiplications would turn out to be trivial. This would
greatly reduce the number of multiplications required. Further, our output is 32 points long but we
only need to be concerned with the first 28. This would also reduce the computation. Thus, the two
methods are more or less comparable in their computations.

As such, the FFT Algorithm does not seem to be providing us any distinct advantage. However, we
have chosen a very small value of N . Consider now that we have a 200-point and a 300-point sequence.
The output is roughly 500 points long (499 to be precise). The number of multiplications required in
the direct computation is 300 × 200 = 60, 000. We would have to work with a 512-point FFT. The
total number of multiplications would then be 512 × log2 512 × 3 = 13, 824. However, note that the
multiplications in the direct computation are real multiplications while those in the FFT are complex
multiplications (for real sequences). A complex multiplication is roughly 4 real multiplications. Hence,
the number of multiplications in the FFT algorithm would be 13, 824× 4 = 55, 296. This is still better
than the direct computation.

The advantage provided by the FFT is still not significant. Let us consider a larger value ofN . Consider
that we have two 1, 000-point sequences. The output is roughly 2, 000 points long (precisely 1, 999).
We hence use a 2, 048-point FFT. The number of multiplications in the direct computation are 1, 000×
1, 000 = 10, 00, 000. For the FFT, we again consider 4 multiplications per complex multiplication. The
total number of multiplications are then 2, 048 × log2 2, 048 × 3 × 4 = 2, 70, 336. This is significantly
better than the direct computation. Hence, for larger and larger sequences, the FFT is more and more
efficient.

10.4. Generalised FFT Algorithm for composite N

So far, we have only discussed the FFT Algorithm when N was a power of 2. Let us consider a
composite value of N . Let N = N1N2 where N1 and N2 are positive integers greater than 1. We now
use two indices n1, n2 in place of n and k1, k2 in place of k. These are related as

n = N2n1 + n2

{
n1 = 0, . . . , N1 − 1

n2 = 0, . . . , N2 − 1

k = k1 +N1k2

{
k1 = 0, . . . , N1 − 1

k2 = 0, . . . , N2 − 1

After simplifying the DFT, we get

X[k1 +N1k2] =

N2−1∑
n2=0


N1−1∑
n1=0

x[N2n1 + n2]W k1n1

N1

W k1n2

N

W k2n2

N2

We interpret this as follows: First, we take N2 N1-point DFTs. These are then modified by the
twiddle factors W k1n2

N . Then, we take N1 N2-point DFTs. This method can then be used recursively
to compute the N1 and N2 point DFTs as well. This method also has a complexity of O(N logN).

References

[1] Lectures by Prof. Vikram M Gadre on the course EE603 - Digital Signal Processing and its Appli-
cations. Autumn, 2009.

76

Digital Signal Processing -Ishan Kapnadak

[2] Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing. Pearson, 2009.

[3] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing.
http://www.dspguide.com/

77

	Introduction
	The Fourier Transform
	Representing Signals
	Introducing the Fourier Series
	From Periodic to Aperiodic : The Fourier Transform
	Why Sine Waves?

	Sampling
	What exactly is Sampling?
	More about sampling and the Nyquist Principle
	The Wagon Wheel Effect
	Introducing Complex Exponentials and Phasors
	Sampling with Phasors
	Normalised Frequency

	Discrete Systems and Linear Shift-Invariant Systems
	What is a discrete system?
	Linearity
	Shift Invariance
	Unit Impulse Response and Convolution
	Stability and the Frequency Response
	Causality

	Domains and Transforms
	Sequences as Vectors
	The Discrete Time Fourier Transform
	Introduction
	Constructing the Inverse DTFT
	Some Properties of the DTFT
	Spectral Energy Density and Parseval's Theorem for sequences

	The Z Transform
	Introduction
	Properties of the Z transform
	Poles, Zeroes and calculating Inverse Z Transforms
	Eigensequences and the System Function
	System Properties - Causality and Stability

	Signal Flow Graph and System Realisations
	The Direct Form I Graph
	The Direct Form II Graph
	Cascade and Parallel Decomposition
	Difference Equations

	Synthesis of Discrete-Time Systems
	The Ideal Filter
	Specifications of a Real Filter
	The Bilinear Transform
	Design Strategy and Low-Pass Filter Design
	The Butterworth Filter
	The Chebyshev Filter
	Chebyshev Polynomials
	Designing the Chebyshev Filter

	Analog Frequency Transformations
	High Pass Filter
	Bandpass Filter
	Bandstop Filter

	Finite Impulse Response Filter Design
	Linear Phase Response
	Truncation and Windowing
	The Kaiser Window
	Lattice Structures
	The Lattice Equations
	Realising FIR Systems via a Lattice Structure
	Generalising to IIR Systems

	The Discrete Fourier Transform
	Discretising the Frequency Axis
	Formulating the Discrete Fourier Transform
	Convolution and Circular Convolution

	The Fast Fourier Transform Algorithm
	Formulating the FFT Algorithm
	Computational Complexity
	Computing Convolutions using the FFT Algorithm
	Generalised FFT Algorithm for composite N

	References

