
Detecting Depression Through Tweets
Thomas Jacob

Department of Electrical Engineering
Indian Institute of Technology, Bombay

Mumbai, India
Email: thomasjac@ee.iitb.ac.in

Ishan Kapnadak
Department of Electrical Engineering

Indian Institute of Technology, Bombay
Mumbai, India

Email: ishankapnadak@iitb.ac.in

Abstract—This paper aims to classify Twitter users into dif-
ferent risk zones for depression based on their recent Tweets.
We first build our own dataset by scraping tweets directly from
Twitter from various pages related to depression and also through
the help of keyword searches. We then constructed various deep
learning models (LSTM, CNN, LSTM-CNN, GRU, BiLSTM and
Attention-based Hybrid) and trained and evaluated them on
our dataset. We examined the effect of using word embeddings
vs. character embeddings vs. subword-level embeddings on the
performance and stability of each model. The best-performing
models were the subword-based CNN with an accuracy of
99.46%, the subword-based LSTM-CNN with an accuracy of
99.46% and the subword-based GRU with an accuracy of
99.25%.

I. INTRODUCTION

A. Motivation

We have all felt sadness at some point in our lives. Sadness
is inevitable, while dealing with the loss of loved ones, or
trying to go through life’s tough challenges. It is often said that
life can neither be all happy nor all sad. It is a bit of both. The
occasional sadness we experience is in fact part of this cycle
itself. However, the problem arises when this sadness seems
never-ending. Long periods of guilt, hopelessness could in fact
be more than just your regular sadness, and could actually be
indicative of clinical depression, a treatable medical condition.

The World Health Organisation (W.H.O) in [1], states that,
“Depression is a common illness worldwide, with more than
264 million people affected. Depression is different from
usual mood fluctuations and short-lived emotional responses to
challenges in everyday life. Especially when long-lasting and
with moderate or severe intensity, depression may become a
serious health condition. It can cause the affected person to
suffer greatly and function poorly at work, at school and in
the family. At its worst, depression can lead to suicide. Close
to 800 000 people die due to suicide every year. Suicide is the
second leading cause of death in 15-29-year-olds.”

Although there are known and effective treatments available
for depression, a significant portion of the population never
receives such treatment. A few reasons for this are - lack
of resources, lack of trained health-care providers and social
stigma associated with mental health. However, another often
overlooked barrier to the treatment of depression is the lack of
assessment. A significant number of depression cases are never
identified and often go undiagnosed. Our project is aimed

at getting more and more cases of depression identified and
diagnosed.

B. Objective

Social media today is a minefield of data and a window into
people’s everyday lives. If used in the right way, social media
provides an opportunity to flag potentially thousands of early
depression cases. We have often scrolled through Twitter and
saw a tweet by a person saying that they are “sick of life”.
In our busy day-to-day lives, we wouldn’t pay much heed to
such tweets. But these tweets are more often than not, a subtle
call for help. We would like to identify and flag such tweets
to keep a track of any early signs of depression in anyone.
Note that our objective is not to diagnose depression but to
only flag cases of early onset or potential cases of depression
so that they can receive appropriate help.

The important question at this point was - what makes a
tweet indicative of depression? A variety of research papers
exist which look at lexical markers of depression. People
suffering from depression often subconsciously use linguistic
patterns indicative of depression. It is possible to build a
dictionary containing all these markers, however this proved to
be too extensive. An important point to note is that depression
is something that is most frequently self-reported and self-
assessed (at least in its initial stages). Hence, if a person
often says that they are depressed, it is quite likely that
they really are depressed. Additionally, words like “helpless”,
“lonely”, “suicidal” are consistently linked with people who
are suffering from feelings associated with depression.

C. Overview of Analysis

Keeping these points in mind, we decided to use some
of these keywords and phrases to build our dataset. Tweets
that were indicative of depression were scraped directly from
Twitter using TWINT ([2]), an advanced Twitter scraping tool
available online. We also used a Kaggle dataset ([3]) to obtain
some random tweets that were not indicative of depression.
Through this project, we looked at the performance of various
neural network architectures on classifying tweets as indicative
of depression. Further, we also looked at the effect of using
word embeddings, character embeddings and subword-level
embeddings on the performance of our models. We used
accuracy as our primary metric for evaluating and comparing
the performance of different architectures. However, since the



depressive class of tweets was rather sparse, we also looked at
other metrics such as precision, recall and F1 score to help us
compare and evaluate different architectures. Additionally, the
training and validation accuracy and loss of each architecture
was monitored over each epoch. Using this, we also evaluated
the architectures based on stability during training. We finally
deployed our models and used them in a simple categorization
algorithm to see how well our models perform on real Twitter
users.

D. Related Works

The task of detecting depression through tweets falls under
the broad spectrum of sentiment analysis, an area which has
been explored a lot. With an increasing onset of cases of
clinical depression in an age of virtual devices, and many
people feeling safer in disclosing their thoughts to strangers on
the internet through tweets, this particular task has garnered a
lot of attention.

One paper, [4], employed an approach of treating each user
individually in detail, extracting about 3000 of their most
recent tweets to predict if they were suffering from depression
or not. They used multiple machine learning approaches,
namely Decision Trees, Naive Bayes and Support Vector
Machines, and treated it as a binary classification problem.
The best results were obtained using the SVM-L classifier,
amounting to an accuracy of 82% and an F1 score of 0.79.

A number of other papers take a different approach wherein,
instead of looking at each user in detail, a large corpus of
tweets indicating depression are extracted along with some
random tweets by scraping followed by the use of word
embeddings to represent the data. Reference [5] compares
different deep learning models (RNN, CNN and GRU) to gen-
erate predictions. They further compared word-based embed-
dings with character-based embeddings as well as pre-trained
embeddings with learned embeddings. The best results were
obtained with the word-based GRU model (98% accuracy) and
the word-based CNN model (97% accuracy).

II. DATASETS

We used two sources to acquire our data. Tweets indicative
of depression were scraped from Twitter itself with the help
of keyword-searches. We decided to use a total of eight
keywords and phrases to help us build our dataset - these were
: ‘depressed’, ‘anxious’, ‘lonely’, ‘helpless’, ‘suicidal’, ‘kill
myself’, ‘sick of life’, and ‘life sucks’. Using [2], we scraped
a total of 11, 200 tweets from the years 2018 and 2020 that
contained one of these eight keywords and phrases. However,
an extensive effort was required to clean this dataset manually.
A significant number of the tweets which were scraped were
irrelevant to our task at hand. For example, a large chunk of
tweets that contained these keywords were in fact depression
awareness posts. Secondly, some of these tweets were made
in humour and some of them also involved movie references.
Such tweets were manually discarded from the dataset. We
also scraped another 500 tweets from 5 Twitter pages that were
specifically about depression. For example, these pages had

usernames such as “depressingmsgs”, “cuttingquote”, “sui-
cidalconcept”. The motivation behind also including tweets
from these pages was to increase the diversity of our data.
We wanted our data to have more positive examples than
just tweets which contained one of those eight keywords or
phrases. Pages like these proved to be the perfect source
for such data. Finally, we were left with a total of 1, 926
tweets that we believed to be truly indicative of depression.
An example of such a tweet was

• I’ve been so depressed lately but I
try my best not to show it.

Additionally, we gathered 8, 040 random tweets from [3].
These tweets were considered as ‘not indicative of depression’.
An example of a tweet from this dataset was

• I really really like the song Love
Story by Taylor Swift

Both these datasets contained a vast number of attributes
such as - date, time, id, tweet, username, user id, conversa-
tion id, hashtags, cashtags, timezone, likes count. However,
only the ‘tweet’ attribute, which contained the text of the
tweet, was important to us. Hence, we merged the scraped
data and Kaggle data and only retained the ‘tweet’ attribute.

Next, we sanitised each tweet so that it can act as a
suitable input to our model. The first step in the pre-processing
chain involved some basic cleaning up of the tweet. For this
task, we utilised tweet-preprocessor ([6]), a Python library
for preprocessing of tweets. This preprocessor handled some
simple tasks such as conversion to lower case, removal of
URLs, Hashtags, Mentions, Emojis, Smileys and Numbers
from the tweet. Next, we removed stopwords from the tweets.
Since our main task was to identify depression in tweets and
since stopwords such as ‘this’, ‘is’, ‘will’ did not add any
meaning to the tweets on their own, it seemed reasonable to
remove them from the tweet entirely. The next step involved
expanding all contractions present in the tweet. A list of
common contractions was easily available online. The final
step in the pre-processing chain involved stemming. The
primary goal of stemming was to reduce inflectional forms of
a word to a common base (the root). For instance, ‘trouble’,
‘troubling’, ‘troubled’ are all reduced to ‘troubl’. Notice that
the common base need not be a word in its own right. Let us
demonstrate the effect of the entire pre-processing chain on
a sample tweet from the random tweets dataset. The original
tweet :

• I’d have responded, if I were going

After passing this tweet through the entire chain, the pre-
processed tweet obtained was :

• i would responded i go

Observe how the entire tweet was converted to lower case.
The contraction “I’d” was expanded to “I would” and the word
“going” was converted to its common base - “go”. After the
pre-processing of tweets was done, we were ready to train
neural network architectures on these tweets.



III. ANALYSIS PIPELINE

A. Setting Up The Data

The entire data was split into three sets - training data
(70%), validation data (15%) and test data (15%). The de-
pressive tweets were assigned label 1 while the random tweets
were assigned label 0. First, we experimented with using word
embeddings. We used a tokenizer from the gensim library
to tokenize the tweets. The maximum number of words in
the vocabulary was set to 20, 000. The tokenizer was fit on
all the training tweets, generating a vocabulary of 10, 197
unique tokens. Further, the Out Of Vocabulary (OOV) Token
of the tokenizer was set to True. Thus, any words that were
not part of the training vocabulary were assigned a common
token of 1. Once the tokenizer was fit on training tweets, it
was saved so that we could use the same tokenizer again
later. All tweets were then converted to sequences using
the tokenizer’s texts to sequences method and were padded
to a maximum length of 120 words. Next, we created an
embedding matrix using the publicly available GoogleNews
pre-trained word embeddings. Each word was encoded as a
300-dimensional vector. Thus, for our vocabulary of 10, 197
tokens, an embedding matrix of size (10197, 300) was created.

B. Baseline Model

Before exploring neural network architectures, we first
decided on a simple Logistic Regression model as our base-
line. We used scikit-learn’s logistic regression model with
default hyperparameters (Regularisation C = 0.1 and Solver
= ‘lbfgs’).

C. LSTM Model

Once our baseline was established, we moved on to explor-
ing various neural network architectures. The first architecture
we implemented was a standard LSTM (long short-term
memory) model. An LSTM is a Recurrent Neural Network
(RNN) architecture that is becoming increasingly popular to
handle Natural Language Processing (NLP) tasks. The detailed
architecture of our LSTM model is shown in Fig 1.

Fig. 1. Architecture of the LSTM Model

The training data was first passed through an embedding
layer with weights specified by the embedding matrix defined
previously. The output of the embedding layer was then passed
through an LSTM layer with a hidden state size of 300. The

LSTM layer was followed by a Dropout layer with dropout
probability 0.6. Finally, the output of the dropout layer was
passed through a dense layer with a single output. A sigmoid
activation was used at the end of the dense layer to squish the
output between 0 and 1. This final output now represented the
probability of the given tweet being indicative of depression.
The model was trained for a total of 30 epochs with a batch-
size of 32. The training and validation loss and accuracy were
monitored throughout the training process. We also used an
Early-Stopping mechanism with a patience of 2 to prevent
overfitting. Once the training procedure was complete, the
model was tested on the withheld 15% test data. A detailed
classification report of the model along with its accuracy was
then printed out.

D. CNN Model

Inspired by [5] and [7], the second architecture we looked
at was a Convolutional Neural Network (CNN) Architecture.
Although CNNs have been commonly used in computer vision
tasks, their ability to recognise high-level spatial features and
patterns has made them popular and surprisingly efficient in
NLP tasks as well. The detailed architecture of the CNN model
used is shown in Fig 2.

Fig. 2. Architecture of the CNN Model

Aside from the architecture, everything else, such as the
training and evaluation of the model remained exactly the same
as the LSTM model. The architecture of the model largely
follows the architecture specified in [7]. However, we used
an additional Dense layer with 10 output units and a ReLU
activation.

E. LSTM+CNN Model

Another increasingly popular architecture stacks an LSTM
on top of a CNN architecture. Reference [8] claims that this
hybrid LSTM-CNN model can effectively improve the accu-
racy in text classification tasks. Moreover, a similar LSTM-
CNN hybrid architecture was also used in [9]. The LSTM-
CNN architecture first uses the same embedding layer that
was used in the other models. We then used a Convolutional
Layer followed by a Maxpooling Layer and a Dropout layer.



This was followed by an LSTM layer and another Dropout
layer. Finally, we use a Dense layer with a single output unit
and sigmoid activation.

The detailed architecture of the hybrid LSTM-CNN model
is shown in Fig 3.

Fig. 3. Architecture of the hybrid LSTM-CNN Model

F. BiLSTM Model
Another variant of the LSTM Model we tried was the

Bidirectional LSTM (BiLSTM) model. While a regular LSTM
architecture holds memory only of the past inputs, a BiLSTM
architecture has the added ability to process both past and
future inputs at any time step. This feature seemed to be quite
useful for sentence classification. In some cases, the context
of a sentence is actually determined by words towards the end
of the sentence. In such cases, a unidirectional forward LSTM
would not perform well as it does not have access to the future
words of the sentence. However, since a BiLSTM has access
to the entire sentence at once, it would perform better than
its unidirectional counterpart. Motivated by this, we defined
the following architecture for the BiLSTM model, as shown
in Fig 4.

Fig. 4. Architecture of the BiLSTM Model

G. GRU Model
We also explored a GRU (Gated Recurrent Unit). As men-

tioned in [5], GRUs prove to be more computationally efficient

than their LSTM variants as they have only two gates (update
and reset) as compared to the three gates (input, output and
forget) of an LSTM. Moreover, the performance of both these
units is nearly at par. The detailed architecture of the GRU
model is shown in Fig 5.

Fig. 5. Architecture of the GRU Model

Note that we have used a Bidirectional architecture for the
GRU model. Thus, we will compare this architecture to that
of the BiLSTM model specified in section III-F.

H. BiLSTM Model with Attention

Many traditional LSTM architectures are able to recognise
sequential patterns in text. However, there is a trade-off. While
using an LSTM architecture, we lose out on the importance
of each word to the sentiment of the sentence. Some words
will have a higher impact in determining the sentiment of a
sentence than others. Ideally, we would want to give a higher
weight to these words. This task is fulfilled by adding an
attention mechanism. Yang et al. (2016) state that “not all
words contribute equally to the representation of the sentence
meaning. Hence, we introduce attention mechanism to extract
such words that are important to the meaning of the sentence
and aggregate the representation of those informative words to
form a sentence vector.” [10, p. 3]. An attention-based hybrid
BiLSTM+CNN model was also used in [11]. Motivated by
this, we defined the architecture for our attention-based model
as shown in Fig 6.

I. Character and Subword Embeddingss

Besides using word embeddings, we also explored character
and subword embeddings to represent sentences accurately.
The primary motivation for doing so was that a sizeable
number of tweets are informal and contain words that might
be out of vocabulary (OOV) for pre-trained word embeddings.
This issue is resolved by character embeddings which only
embed each character in the sentence rather than the words
themselves. However, character embeddings come with the
downside of being less capable of capturing a word’s sentiment
information as compared to word embeddings. Subword-level
embeddings somewhat enjoy the best of both worlds with the
ability to capture the semantics of a sentence to an extent,



Fig. 6. Architecture of the Attention-based BiLSTM+CNN Model

along with being able to represent OOV words. This require-
ment is crucial to our objective, a sentiment classification
problem in an informal setting, which makes it more likely for
users to use OOV words. We used Byte Pair Encoding (BPE), a
common Subword Embedding technique, making use of helper
code obtained from [12]. Once our models were trained and
evaluated with all three embeddings, we proceeded to make a
comparative analysis between word, character, and subword-
level embeddings.

Since we were embedding sentences based on characters
and subwords only, we performed minimal pre-processing
of the tweets and only removed URLs present in the tweet
and converted them to lower case. Further, architectures for
character and subword-level embeddings were largely the
same as word embeddings, except that the outputs were one-
hot encoded and thus, the final dense layer had two output
units.

J. User Classifier

Once all models were trained and evaluated, we moved on
to deploying these models to classify users based on their
tweets. The idea was as follows - we looked at the 500 most
recent tweets of any particular user. If the number of tweets
scraped were less than 10, we decided to not classify that
user owing to insufficient data. If we could scrape at least
10 tweets from a particular user, we proceeded to classify
that user into one of four ‘risk’ zones. If less than 2% of the
user’s recent tweets were classified as indicative of depression
(by our trained model), we categorized the user as having
‘low to no’ risk of depression. If between 2% to 10% of the
user’s recent tweets were classified as indicative of depression,

we categorized them as having ‘mild’ risk of depression. If
between 10% to 35% of the user’s recent tweets were classified
as indicative of depression, we categorized them as having
‘moderate’ risk of depression. Anything above 35% and the
user was classified as having ‘significant’ risk of depression.

IV. RESULTS

A. Metrics Used
We primarily used four metrics to evaluate and compare our

models. These were - accuracy (η), precision (P ), recall (R)
and F1-Score. These metrics are defined as follows:

η =
TP + TN

TP + TN + FP + FN

P =
TP

TP + FP

R =
TP

TP + FN

F1 =
2 · P ·R
P +R

where TP, TN,FP, FN denote the number of true pos-
itives, true negatives, false positives and false negatives re-
spectively. Furthermore, we also kept a tab of training and
validation accuracy and loss while training the model. A
graph of these parameters were plotted against the number of
epochs. This helped in comparing models based on stability.
Once all models were trained and evaluated with all three
embeddings, we undertook a comparative study between the
three embeddings.

B. Word Embeddings
The baseline logistic regression model achieved an accuracy

81.34% with word embeddings. Surprisingly, all other archi-
tectures we used had roughly similar performances and there
were no pronounced differences between their accuracies.
Moreover, all architectures performed significantly better than
the baseline logistic regression model. The LSTM architecture
achieved an accuracy of 94.38%. The CNN model performed
slightly better than the LSTM, achieving an accuracy of
94.58%. The hybrid LSTM-CNN model achieved a slightly
lower accuracy of 93.98%. The BiLSTM model did not
perform as well as the LSTM and achieved an accuracy of
93.38% which was an entire 1% less than the 94.38% accuracy
achieved by the unidirectional LSTM. This went against
our intuition that the BiLSTM would perform better at text
classification tasks. The (bidirectional) GRU model achieved
an accuracy of 93.44%, which was better than the BiLSTM
model. Thus, the GRU model outshone its LSTM counterpart
despite having one lesser gate. Finally, the attention-based
BiLSTM-CNN model achieved a lower accuracy of 92.64%.
Thus, the CNN model came out on top as the best-performing
architecture, closely followed by the LSTM and the hybrid
LSTM-CNN models. This was a surprising result because the
CNN architecture, which was initially meant for computer
vision tasks, outperformed both LSTM and GRU architectures
which are well suited to NLP tasks. This demonstrated the
versatility of the CNN architecture.



C. Character Embeddings

The performance of the baseline logistic regression model
increased on using character embeddings, with an increased
accuracy of 84.35%. The performance of the LSTM model
dropped sharply as it displayed an accuracy of just 87.66%
which was only slightly better than the baseline accuracy of
84.35% and significantly lesser than the 94.38% it achieved
with word embeddings. The performance of the CNN, GRU
and attention-based models increased slightly, displaying ac-
curacies of 97.09%, 96.49% and 94.18% respectively. The
BiLSTM model achieved an accuracy of 89.57% which was
just slightly above the baseline model while the hybrid LSTM-
CNN model achieved an accuracy of 93.48% which was
nearly the same as the 93.98% accuracy it achieved with word
embeddings.

D. Subword-Level Embeddings

The performance of the baseline logistic regression model
increased on using subword-level embeddings as well, achiev-
ing an accuracy of 87.47%. The performance of the LSTM
model again dropped sharply, achieving an accuracy of just
87.58%, which provides hardly any significant improvement
over the baseline model. Further, the learning rate for the
LSTM model seemed to be too low and the loss and accuracy
on both training and validation data seemed to remain more or
less the same over numerous epochs. The performance of the
BiLSTM model increased to 94.97% while the performance of
the attention-based model dropped to 91.01%. The remaining
three models - CNN, LSTM+CNN and GRU - displayed
a sharp increase in performance, achieving astounding ac-
curacies of 99.46%, 99.46% and 99.25% respectively. (See
Appendix A for detailed classification reports of each model
with each embedding).

E. Qualitative Stability Analysis

We also monitored the behaviour of the models during
their training phase with the help of graphs. An example of
such a graph is shown in Fig 7, which shows the training
and validation loss and accuracy of the word-embedded CNN
model against the number of epochs.

We analysed these loss curves and drew conclusions about
the stability of models. The CNN model was by far the most
stable model amongst all architectures, displaying extremely
smooth loss and accuracy curves. The LSTM and BiLSTM
models were quite unstable, showing spikes and erratic jumps
in their loss curves. Adding a CNN layer on top of an LSTM
layer improved the stability of the model, as was seen in the
LSTM-CNN and the attention-based hybrid model. The GRU
model was more stable than its LSTM counterpart (BiLSTM
model) but still showed spikes in its loss curves. These
trends roughly remained the same across all three embeddings,
indicating that the embedding had little to no effect on the
stability of the model (See Appendix B for figures).

(a) Loss Curve

(b) Accuracy Curve

Fig. 7. Measurements of training and validation loss and accuracy for the
CNN model with word embeddings.

F. User Classifications

Finally, we deployed our models to classify users into risk
zones based on depression. We used a total of 10 Twitter
handles for our experiment. First, we tested our classifier
on 5 celebrities who have opened up about their depres-
sion previously in interviews. These were - Dwayne Johnson
(@TheRock), Katy Perry (@katyperry), Lady Gaga (@la-
dygaga), JK Rowling (@jk rowling) and Deepika Padukone
(@deepikapadukone). We also took five random Twitter pages.
These were - NDTV (@ndtv), Indian Premier League (@IPL),
Bon Appétit (@bonappetit) (a food blog), Animal Planet
(@AnimalPlanet) and Fun Facts (@Funfacts).

We first tested our CNN model with word embeddings. It
classified Katy Perry, Lady Gaga and JK Rowling as having
a mild risk of depression. However, it classified Dwayne
Johnson and Deepika Padukone as having low to no risk of
depression. The model also correctly classified all five random
pages as having low to no risk of depression.

Next, we tested our CNN model with subword embeddings
as well as our GRU model with subword embeddings. Both
the CNN and the GRU models classified Dwayne Johnson
and Katy Perry as having a moderate risk of depression. The
CNN model classified Lady Gaga and JK Rowling as having



a mild risk of depression and Deepika Padukone as having
a moderate risk of depression. The GRU model classified
Lady Gaga and JK Rowling as having a moderate risk of
depression and classified Deepika Padukone as having a mild
risk of depression. The CNN model correctly classified all
five random pages as having low to no risk of depression. The
GRU model classified NDTV, Bon Appétit and Fun Facts as
having low to no risk of depression but classified IPL and
Animal Planet as having mild risk of depression.

V. DISCUSSION

A. Key Takeaways

Almost all of our architectures displayed quite a high
performance. We suspect that this was due to the smaller
size of our dataset and lesser diversity present in the dataset.
The best models were the subword-based CNN model with an
accuracy of 99.46%, the subword-based LSTM+CNN model
with an accuracy of 99.46% and the subword-based GRU
model with an accuracy of 99.25%.

We were also able to compare the strengths and weaknesses
of various architectures through our experiments. For example,
the GRU model performed better than the BiLSTM model
despite having one gate lesser. The CNN model was the
most stable model and also the highest performing one. This
displayed the versatility of convolutional networks in identify-
ing sentence-level features. The LSTM model was inherently
unstable but adding a convolutional layer greatly improved its
stability. The performance of the LSTM and BiLSTM models
significantly deteriorated with character embeddings. Since
LSTMs are equipped to model only short-range dependencies,
we suspect that this drop in performance was due to the fact
that embedding sentences as characters or subwords would
prevent the LSTM from learning any dependencies between
words at all since its neighbourhood now consists of really just
a word or two at max. We hence conclude with a good amount
of confidence that word embeddings were a better option for
LSTM and BiLSTM models as compared to character em-
beddings. For the other models, the character embeddings did
improve performance, but since the increase in performance
was not too pronounced, this conclusion remained weak.
Subword-level embeddings did not hamper the performance
of any architecture significantly (apart from the LSTM) and
they greatly increased the performance of the CNN, GRU and
LSTM-CNN models. We could thus make a strong conclusion
that subword level embeddings are the best-suited embedding
for our task for nearly all architectures.

B. Strengths

Our subword-level embedded models were quite adept at
identifying tweets indicative of depression. Moreover, our user
classification algorithm, though simple, worked effectively
well. It predicted a moderate or a mild risk of depression in all
of the five celebrities we considered. Since celebrities have a
well-curated social media presence, this result is not a strong
conclusion. However, we believe that the mass public are a lot
more open about their mental health issues on social media as

compared to celebrities. Keeping this in mind, we expect our
model to perform better on a more widespread population.

We believe that our approach of classifying users into risk
zones based on their tweets is unique and has the potential
to help many. Since users are classified into different risk
zones, each category can receive help that is suited for them.
Our approach has the potential to identify early signs of
depression through something as simple as a tweet and we
believe that with a little bit of effort, we can make sure that
people suffering from depression, at any level of intensity, are
identified and given the care that they deserve.

C. Improvements and Further Experimentation

Our project could use some improvements in several key
areas. We elaborate on three of these areas - dataset im-
provements, model improvements and classification algorithm
improvements.

Currently, we have only scraped tweets corresponding to
eight keywords and key-phrases and five depression-related
pages. This was thus, a relatively small dataset and not
diverse enough. To make our models more robust and versatile,
an expansion in data is necessary. A much more extensive
dictionary of lexical markers indicative of depression can be
created. Moreover, these tweets can be labelled as indicative
of depression by experts and medical practitioners who would
be able to understand fine nuances in each tweet and classify
them appropriately with the help of their vast experience
and knowledge. Instead of depression-related pages, we could
also train our model on twitter users who have already been
diagnosed with depression.

Besides our dataset, we could also make some improve-
ments to our models in future iterations. A Multiplicative
LSTM is a worthwhile model to explore. We may also
explore the effect of pre-trained embeddings and learned
embeddings, as done in [5]. We also wish to explore various
other subword level embedding techniques besides Byte Pair
Encoding (BPE), such as Sentencepiece. We also wish to
incorporate a ‘time’ element into our model. That is, we would
like to explore if the time of the day when a user tweets
most frequently has any correlation with whether the user is
depressed or not. We also wish to explore using Transformers
for our task.

Finally, we can also make improvements in our user clas-
sification algorithm. Our current algorithm is very crude and
simplistic. This algorithm can be made more intelligent by
allowing the algorithm to learn the classification boundaries
for different risk zones on its own. To achieve this, several
Twitter users could first be categorised into the risk zones
we outlined based on the severity of their cases. We can then
program our model to classify each tweet into one of these risk
zones, rather than just a simple binary classification. Finally,
the most recent 500 tweets of a user will be scraped and
classified and the user will be assigned the risk zone which
has a majority of the user’s tweets assigned to it.



ACKNOWLEDGMENT

We would like to thank our instructors, Prof. Amit Sethi,
Prof. Manjesh K Hanawal, Prof. S Sudarshan and Prof. Sunita
Sarawagi of IIT Bombay. This project would not have been
possible without their guidance. We would also like to thank
our Teaching Assistant, Drumil Trivedi of IIT Bombay, for
their constant assistance with our project. We would like to
thank our classmates, Aaron Jerry Ninan, Tirthankar Adhikari,
Moysha Gera, Hiya Gada and Harshda Saxena of IIT Bombay
for helping us decide what keywords and phrases to use to
build our dataset. Lastly, we would like to thank our parents
and family for their constant support and motivation.

REFERENCES

[1] World Health Organisation - Depression Fact Sheets.
https://www.who.int/news-room/fact-sheets/detail/depression

[2] TWINT - Twitter Intelligence Tool. https://github.com/twintproject/twint
[3] Kaggle Data Set - Twitter Sentiment Extraction.

https://www.kaggle.com/c/tweet-sentiment-extraction/data?select=train.
csv

[4] Hatoon AlSagri and Mourad Ykhlef. “Machine Learning-based Ap-
proach for Depression Detection in Twitter Using Content and Activity
Features,” 2020.

[5] Diveesh Singh and Aileen Wang. “Detecting Depression Through
Tweets,” 2018.

[6] tweet-preprocessor. https://pypi.org/project/tweet-preprocessor/
[7] Kim Yoon. “Convolutional Neural Networks for Sentence Classifica-

tion,” 2014.
[8] J. Zhang, Y. Li, J. Tian and T. Li, ”LSTM-CNN Hybrid Model for

Text Classification,” 2018 IEEE 3rd Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), Chongqing,
2018, pp. 1675-1680, doi: 10.1109/IAEAC.2018.8577620.

[9] Anne Bonner. “You Are What You Tweet: Detecting Depression in
Social Media via Twitter Usage,” 2019.

[10] Zichao Yang, Diyi Yang, Chris Dyer, Xiadong He, Alex Smola and
Eduard Hovy. “Heirarchial Attention Networks for Document Classifi-
cation,” 2016.

[11] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, Sang-ug Kang
and Jong Wook Kim. “Bi-LSTM Model to Increase Accuracy in Text
Classification: Combining Word2Vec CNN with Attention Mechanism,”
2020.

[12] Xu, Liang. “Keras Implementations for NLP Models, ” 2018.
https://github.com/BrambleXu/nlp-beginner-guide-keras

[13] Pei-Jo Yang (MIT). “Detect Depression In Twitter Posts,” 2020.
https://github.com/peijoy/DetectDepressionInTwitterPosts

https://www.who.int/news-room/fact-sheets/detail/depression
https://github.com/twintproject/twint
https://www.kaggle.com/c/tweet-sentiment-extraction/data?select=train.csv
https://www.kaggle.com/c/tweet-sentiment-extraction/data?select=train.csv
https://arxiv.org/ftp/arxiv/papers/2003/2003.04763.pdf
https://arxiv.org/ftp/arxiv/papers/2003/2003.04763.pdf
https://arxiv.org/ftp/arxiv/papers/2003/2003.04763.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6879557.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6879557.pdf
https://pypi.org/project/tweet-preprocessor/
https://arxiv.org/pdf/1408.5882.pdf
https://arxiv.org/pdf/1408.5882.pdf
https://towardsdatascience.com/you-are-what-you-tweet-7e23fb84f4ed
https://towardsdatascience.com/you-are-what-you-tweet-7e23fb84f4ed
https://www.https://www.who.int/news-room/fact-sheets/detail/depressioncs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf
https://www.https://www.who.int/news-room/fact-sheets/detail/depressioncs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf
https://www.mdpi.com/2076-3417/10/17/5841/pdf
https://www.mdpi.com/2076-3417/10/17/5841/pdf
https://github.com/BrambleXu/nlp-beginner-guide-keras
https://github.com/peijoy/DetectDepressionInTwitterPosts


APPENDIX A
CLASSIFICATION REPORTS

(a) LSTM Architecture (b) CNN Architecture (c) LSTM+CNN Hybrid Architecture

(d) BiLSTM Architecture (e) GRU Architecture (f) Attention-based Hybrid Architecture

Fig. 8. Classification reports of the six architectures with word embeddings

(a) LSTM Architecture (b) CNN Architecture (c) LSTM+CNN Hybrid Architecture

(d) BiLSTM Architecture (e) GRU Architecture (f) Attention-based Hybrid Architecture

Fig. 9. Classification reports of the six architectures with character embeddings

(a) LSTM Architecture (b) CNN Architecture (c) LSTM+CNN Hybrid Architecture

(d) BiLSTM Architecture (e) GRU Architecture (f) Attention-based Hybrid Architecture

Fig. 10. Classification reports of the six architectures with subword-level embeddings

(a) Word Embeddings (b) Character Embeddings (c) Subword-Level Embeddings

Fig. 11. Classification reports of the baseline logistic regression model for the three different embeddings



APPENDIX B
PERFORMANCE CURVES

A. Word Embeddings

(a) LSTM Architecture (b) CNN Architecture (c) LSTM+CNN Hybrid Architecture

(d) BiLSTM Architecture (e) GRU Architecture (f) Attention-based Hybrid Architecture

(g) LSTM Architecture (h) CNN Architecture (i) LSTM+CNN Hybrid Architecture

(j) BiLSTM Architecture (k) GRU Architecture (l) Attention-based Hybrid Architecture

Fig. 12. Measurements of training and validation loss and accuracy for the six architectures used with word embeddings.



B. Character Embeddings

(a) LSTM Architecture (b) CNN Architecture (c) LSTM+CNN Hybrid Architecture

(d) BiLSTM Architecture (e) GRU Architecture (f) Attention-based Hybrid Architecture

(g) LSTM Architecture (h) CNN Architecture (i) LSTM+CNN Hybrid Architecture

(j) BiLSTM Architecture (k) GRU Architecture (l) Attention-based Hybrid Architecture

Fig. 13. Measurements of training and validation loss and accuracy for the six architectures used with character embeddings.



C. Subword-Level Embeddings

(a) LSTM Architecture (b) CNN Architecture (c) LSTM+CNN Hybrid Architecture

(d) BiLSTM Architecture (e) GRU Architecture (f) Attention-based Hybrid Architecture

(g) LSTM Architecture (h) CNN Architecture (i) LSTM+CNN Hybrid Architecture

(j) BiLSTM Architecture (k) GRU Architecture (l) Attention-based Hybrid Architecture

Fig. 14. Measurements of training and validation loss and accuracy for the six architectures used with subword-level embeddings.



APPENDIX C
LIST OF NOTEBOOKS AND FILES

Following is a list of notebooks and files that were used in our project
1. Scraping_Keywords.ipynb - Jupyter Notebook for scraping of tweets using keyword searches
2. Scraping_Pages.ipynb - Jupyter Notebook for scraping of tweets from depression-related pages
3. Preprocessing.ipynb - Jupyter Notebook for preprocessing of tweets
4. Word-Embeddings.ipynb Jupyter Notebook to train and evaluate all models with word embeddings
5. Character-Embeddings.ipynb Jupyter Notebook to train and evaluate all models with character embeddings
6. Subword-Embeddings.ipynb Jupyter Notebook to train and evaluate all models with subword-level embeddings
7. User-Classifier-Word.ipynb Jupyter Notebook to deploy final model with word embeddings and classify users

into risk zones
8. User-Classifier-Subword.ipynb Jupyter Notebook to deploy final model with subword-level embeddings and

classify users into risk zones
9. GoogleNews-vectors-negative300.bin.gz Pretrained Word Embeddings from GoogleNews

10. tokenizer.pickle Saved tokenizer file
11. Helper files for Subword-level embedding.
12. CSV files containing data of all tweets
13. H5 files containing saved model files for all architectures and embeddings


	Introduction
	Motivation
	Objective
	Overview of Analysis
	Related Works

	Datasets
	Analysis Pipeline
	Setting Up The Data
	Baseline Model
	LSTM Model
	CNN Model
	LSTM+CNN Model
	BiLSTM Model
	GRU Model
	BiLSTM Model with Attention
	Character and Subword Embeddingss
	User Classifier

	Results
	Metrics Used
	Word Embeddings
	Character Embeddings
	Subword-Level Embeddings
	Qualitative Stability Analysis
	User Classifications

	Discussion
	Key Takeaways
	Strengths
	Improvements and Further Experimentation

	References
	Appendix A: Classification Reports
	Appendix B: Performance Curves
	Word Embeddings
	Character Embeddings
	Subword-Level Embeddings

	Appendix C: List of Notebooks and Files

