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INTRODUCTION



(S,T) THRESHOLD SCHEMES

We begin by introducing a scheme for secret sharing known as the
(S, T) threshold scheme.

Definition 1.1
An (S, T) threshold scheme for secret sharing is a method in which
a secret is transformed into S shares such that

1. the knowledge of any T shares reveals the secret, but
2. the knowledge of any T− 1 or fewer shares reveals no
information about the secret.

Here by knowledge of a share, we mean knowledge of its value as
well as its position in the list of shares.
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(S,T) THRESHOLD SCHEMES USING POLYNOMIAL INTERPOLATION

An elegant formulation of the (S, T) threshold schemes is via
polynomial interpolation. We may assume that the secret is an
integer, D. Suppose we wish to design a (n, k) threshold scheme. We
pick a prime p that is larger than both D and n. We now pick a
random k− 1-degree polynomial q(x) ∈ Zp[x], defined as

q(x) = a0 + a1x+ · · ·+ ak−1xk−1

where a0 = D. We further evaluate Di = q(i) for all i = 1, . . . ,n. The
list of shares is now {D1, . . . ,Dn}. Given any subset of k shares, we
can determine the polynomial q(x) exactly using polynomial
interpolation, and thus D can be evaluated as q(0). The knowledge of
k− 1 or fewer shares however does not reveal any information since
we need at least k shares to interpolate.
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(S,Γ) ACCESS STRUCTURE SCHEMES

In some cases, we want some users to have a greater privilege of
access than others. This is most commonly formulated using an
(S, Γ) access structure scheme, as defined below.

Definition 1.2
An (S, Γ) access structure scheme for secret sharing is a method in
which a secret is transformed into S shares such that

1. the knowledge of the shares in any set in Γ reveals the secret,
but

2. the knowledge of the shares of a set having no subset (not
necessarily proper) in Γ reveals no information about the secret.
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(S,Γ) ACCESS STRUCTURE SCHEMES - AN EXAMPLE

As an example, consider that a bank has 4 employees, A, B, C, and D.
A is the president whereas B,C,D are all vice-presidents. A possible
access structure scheme for such a case may be defined as
S = {A,B, C,D} and Γ = {{A,B}, {A, C}, {A,D}}. Intuitively, such a
scheme gives high privilege to the president since the president can
access the secret along with any one other vice-president, but the
vice-presidents, even together, cannot access the secret without
knowledge of the president’s share.

To analyse what access structures can be realised using q-ary (n, k)
codes, we first look at the concept of minimal codewords.
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MINIMAL CODEWORDS

A q-ary n-tuple x is said to cover a q-ary n-tuple x′ if in every
coordinate where x′ is non-zero, x is also non-zero. For example, the
3-ary 4-tuple (0, 1, 2, 1) covers (0, 2, 1, 0)

Definition 2.1 (Minimal Codeword)
A codeword x in a q-ary (n, k) code is said to be minimal if

1. x is a non-zero codeword whose leftmost non-zero component
is a 1, and

2. x covers no other codeword whose leftmost non-zero
component is a 1.

We have the following interesting property of minimal codewords.

Proposition 2.2

Every non-zero codeword in a q-ary (n, k) linear code can be written
as a linear combination of those minimal codewords that it covers.
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PROOF OF PROPOSITION 2.2

Proof.
Let x be a non-zero codeword. If x is minimal, we are done. Else, x
covers a minimal codeword (say x1), and thus, there is a constant c1
such that x− c1x1 has Hamming weight strictly less than x. If x− c1x1
is 0 or a minimal codeword, we are again done. Else, x− c1x1
covers another minimal codeword (say x2), and thus x− c1x1 − c2x2
has Hamming weight strictly less than x− c1x1. Continuing this way,
we must eventually arrive at the zero codeword since we decrease
the Hamming weight at each step. As a result, we have

x = c1x1 + · · ·+ cnxn

for some constants c1, . . . , cn. Moreover, x1, . . . , xn are exactly those
minimal codewords that x covers.
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ACCESS STRUCTURE SCHEME USING MINIMAL CODEWORDS

Every q-ary (n, k) linear code C with no idle components (i.e. no
components that are 0 in all codewords) forms an (S, Γ) access
structure scheme with S = n− 1. The secret is taken as the first digit
of the codeword, x1 and the digits in some other specified k− 1
components are independently chosen at random. These k
components together form an information set and thus we are able
to compute the entire codeword x = (x1 · · · xn). The share list as
taken as {x2, . . . , xn}, which gives us S = n− 1.

Proposition 2.3

For the above q-ary (n, k) linear code, the access set Γ consists of
precisely those share sets corresponding to those minimal
codewords of C⊥ that have 1 as their first component. The share set
specified by such a minimal codeword contains the share xi
(2 ≤ i ≤ n) iff the ith component of the minimal codeword is
non-zero.
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AN EXAMPLE

The proof for Proposition 2.3 follows directly from 2.2, and hence we
omit the proof here. As an illustrative example, consider a code C
over F2 having the following parity check matrix (which is also the
generator matrix for the dual code C⊥)1 1 1 0 0

1 1 0 1 0
1 1 0 0 1


It is easy to see that the only minimal codewords of C⊥ are 11100,
11010, 11001, 00110, 00101, and 00011. The minimal codewords with 1
as their first component are 11100, 11010, and 11001. This corresponds
to Γ = {{x2, x3}, {x2, x4}, {x2, x5}}. Letting x2, x3, x4, x5 be the shares of
A,B, C,D respectively, we see that we are able to emulate the
president and vice-president example discussed previously.
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ORTHOGONAL ARRAYS

We collect some definitions and results about orthogonal arrays that
will help us in further sections.

Lemma 3.1
If the k× n q-ary matrix G is the generator matrix of a q-ary linear
(n, k) code C, then the minimum distance d of C is the smallest
number of columns that can be removed from G to yield a matrix
with rank less than k.

Lemma 3.2

If the k× n q-ary matrix G is the generator matrix of a q-ary linear
(n, k) code C, then the minimum distance d⊥ of the dual code C⊥ is
the smallest number t of columns of G that form a k× t matrix with
rank less than t.

We omit the proofs here due to a paucity of time.
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ORTHOGONAL ARRAYS

Definition 3.3
An orthogonal array OAλ(t,n,q) is a λqt × n array such that in every
choice of t columns (t ≥ 1), each of the qt possible q-ary t-tuples
appears in exactly λ rows. Orthogonal arrays with distinct rows (or
equivalently, λ = 1) are said to be simple.

Note that for t ≥ 2, an OAλ(t,n,q) is also an OAλq(t− 1,n,q), and
thus, the parameter of interest is the maximum t for which a given
array is orthogonal. The following is an example of a simple
orthogonal array OA1(2, 3, 2). 

0 0 0
1 0 1
0 1 1
1 1 0
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ORTHOGONAL ARRAYS

Proposition 3.4
The maximum t for which a qk × n q-ary array, whose rows are
codewords of a q-ary linear (n, k) code C with k < n and d⊥ > 1 is
an orthogonal array OAλ(t,n,q) (necessarily simple), is t = d⊥ − 1.

Proof.
Let G̃ be the submatrix of G formed by some choice of t columns.
Then, x̃ = uG̃ is a mapping of the information k-tuple u to those t
components of the codeword that correspond to the chosen
columns. This mapping is surjective if and only if G̃ has rank t.
Assuming the map is surjective, linearity guarantees that the
equation x̃ = uG̃ has the same number of solutions for each
possible t-tuple, x̃. (Note that if x̃1 = u1G̃ and x̃2 = u2G̃, then
x̃1 + x̃2 = (u1 + u2)G̃). The result now follows from Lemma 3.2.
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LARGE SET OF SIMPLE ORTHOGONAL ARRAYS

Definition 3.5
A large set of simple orthogonal arrays OAλ(t,n,q) is a collection of
qn−t

λ such arrays with the property that every q-ary n-tuple appears
as a row in exactly one of the arrays of the collection.

If S is the set of rows of a simple orthogonal array OAλ(t,n,q) and x
is a q-ary n-tuple, then it is easy to see that the translated set x+ S
is also a simple orthogonal array. Moreover, if S corresponds to a
linear code C, then x+ S is a coset of C. Since cosets are either
identical or disjoint, we may form a large set of simple orthogonal
arrays by vertically stacking S along with all its qn−k − 1 non-zero
translates (or equivalently, by vertically stacking all qn−k cosets of C).
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RESILIENT FUNCTIONS

A common objective of cryptographers is to ensure that local
constraints on the input result in no constraints on the output. This
idea is tied with the notion of resilient functions. Intuitively,
resilient functions are functions whose output appears random even
if some portion of the input is revealed or fixed. We define resilient
functions more formally below.

Definition 4.1
A function f : Fnq → Fn−kq (1 < k < n) is said to be t-resilient if, for
every choice of t of the input digits, when the value of these input
digits are fixed and the values of the remaining n− t input digits
are chosen uniformly at random, then all n− k of the output digits
are uniformly random.
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RESILIENT FUNCTIONS AND ORTHOGONAL ARRAYS

Lemma 4.2
A function f : Fnq → Fn−kq is t-resilient if and only if the collection of
qn−k sets f−1(y1, . . . , yn−k) determined by all possible outputs
[y1, . . . , yn−k] is a large set of simple orthogonal arrays OAλ(t,n,q).

Interestingly, we have already discussed an example of a t-resilient
function, while discussing syndrome decoding. We formalise this
now.

Proposition 4.3
If H is an (n− k)× n parity check matrix of a q-ary (n, k) linear code
C, then the maximum t such that the linear function x 7→ xH⊺ is
t-resilient is t = d⊥ − 1, where d⊥ is the minimum distance of the
dual code C⊥.
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HOW IT ALL CONNECTS

We now look at a syndrome decoding example to illustrate how
beautifully the concepts of orthogonal arrays, resilient functions, and
syndromes connect. We consider Q8 of HW1 which talks about a
(6, 3) binary linear code that has the following parity check matrix

H =

1 1 0 1 0 0
1 0 1 0 1 0
1 1 1 0 0 1


We calculate the generator matrix as

G =

1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1
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HOW IT ALL CONNECTS (2)

For the previous code, we have the following coset decomposition.

000000 100111 010101 001011 110010 101100 011110 111001
000001 100110 010100 001010 110011 101101 011111 111000
000010 100101 010111 001001 110000 101110 011100 111011
000100 100011 010001 001111 110110 101000 011010 111101
001000 101111 011101 000011 111010 100100 010110 110001
010000 110111 000101 011011 100010 111100 001110 101001
100000 000111 110101 101011 010010 001100 111110 011001
000110 100001 010011 001101 110100 101010 011000 111111

The first row consists of all the codewords of the code. We leave it as
a simple exercise to verify that this indeed forms an orthogonal
array. Moreover, each row is the first row translated by the error
vector (which is the coset leader). In line with the discussion on
orthogonal arrays, we have that each row is a translate of an
orthogonal array and thus, is an orthogonal array itself. Thus, the
above collection forms a large set of simple orthogonal arrays. 17



HOW IT ALL CONNECTS (3)

Now, the syndrome decoding table is given by

Coset Leader Syndrome
000000 000
000001 001
000010 011
000100 111
001000 010
010000 110
100000 101
000110 100

Thus, the inverse image of a given syndrome consists of all the
codewords of the code translated by the corresponding coset leader.
Equivalently, this is the row in the coset decomposition
corresponding to the coset leader for the given syndrome.
Moreover, since this coset decomposition forms a large set of simple
orthogonal arrays, the syndrome map f : F62 → F32 is resilient.
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SUMMARY

Our discussion can essentially be divided into two components. We
first talked about secret sharing schemes and how they connect with
minimal codewords. Then, we talked about orthogonal arrays and
resilient functions. As an illustrative example, we discussed how
these concepts come into play in the familiar territory of syndrome
decoding that we have already encountered before in the course.
There were two sections from the main paper that we could not
cover due to paucity of time. These include local randomisation, and
quantifying non-linearity of Boolean functions. We encourage
interested peers to refer to the original paper to look up these
sections. Thank you!
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