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ABSTRACT

We begin with a brief discussion of Number Theory. Then, we move on to Group
Theory, where we cover examples of groups, homomorphisms, quotient groups,

isomorphism theorems, group actions, and Sylow’s theorems. We then move on to Ring
Theory, covering rings, fields, homomorphisms, domains, and polynomial rings. Finally,

we cover introductory Galois Theory, discussing algebraic extensions, separable
extensions, normal extensions, Galois extensions, and end by stating the Fundamental

Theorem of Galois Theory.
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§0 Preliminaries 2

§0. Preliminaries

§§0.1. Notation

1. N = {0, 1, 2, . . .} is the set of non-negative integers

2. N+ = {1, 2, 3, . . .} is the set of positive integers

3. Z = {0,±1,±2, . . .} is the set of integers

4. Q =
{
m
n | m,n ∈ Z,n 6= 0

}
is the set of rationals

5. R is the set of reals

6. C is the set of complex numbers

7. Q×, Z∗, R×, C× will denote the set of non-zero rationals, integers, reals and complex num-
bers respectively.

§§0.2. Relations and Partitions

Definition 0.1. A relation on A is a subset R of A×A. If (a,b) ∈ R, we say that a is related to b
by R and write aRb or a ∼ b.

For example, ‘equality’ (=) is a relation on any set A. ‘Less than’ (<) is a relation on R or any of its
subsets. Fix a positive integer n. Then, ‘congruence modulo n’ (≡) is a relation on Z, defined by

a ≡ b (mod n) ⇐⇒ n | a− b.

Definition 0.2. A relation ∼ on A is said to be an equivalence relation if it is

1. reflexive, i.e, a ∼ a for all a ∈ A,

2. symmetric, i.e, a ∼ b implies b ∼ a for all a,b ∈ A, and

3. transitive, i.e, a ∼ b and b ∼ c implies a ∼ c for all a,b, c ∈ A.

It is easy to show that < is transitive but not reflexive or symmetric. = is an equivalence relation
on any set whereas ≡ (mod n) is an equivalence relation on Z.

Exercise 0.3.

1. Show that the relation ∼ on N×N =
{
(m,n) | m,n ∈N

}
defined by

(m,n) ∼ (m′,n′) ⇐⇒ m+n′ = m′ +n

is an equivalence relation.

2. Show that the relation ∼ on Z×Z∗ =
{
(m,n) | m,n ∈ Z,n 6= 0

}
defined by

(m,n) ∼ (m′,n′) ⇐⇒ m · n′ = m′ · n

is an equivalence relation.
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Remark 0.4 (Well-Ordering Property). Every non-empty subset of N has a least element. That is,
if A ⊆N and A 6= ∅ then ∃m ∈N such thatm ≤ a for all a ∈ A. WOP is also true for any subset
of Z which is bounded below. WOP also implies the principle of induction.

Definition 0.5. If ∼ is an equivalence relation on A, then for any a ∈ A, the set

[a]∼ := {b ∈ A | b ∼ a}

is called the equivalence class of awith respect to ∼. Elements of the equivalence class of a are said
to be equivalent to a. If C is an equivalence class, then any element of C is called a representative
of classC. We will denote the equivalence class of a as [a] when the relation ∼ is clear from context.

Example 0.6. Fix some n ∈N+ and consider the equivalence relation≡ (mod n). We have a total
of n equivalence classes, defined by

[0] =
{
kn | k ∈ Z

}
[1] =

{
kn+ 1 | k ∈ Z

}
... =

...
[n− 1] =

{
kn+n− 1 | k ∈ Z

}
These are called the residue classes (mod n). We sometimes also denote the residue classes as
0, 1, . . . ,n− 1. We denote the set of residue classes of n as Zn, defined as

Zn :=
{
0, 1, . . . ,n− 1

}
.

For a,b ∈ Zn, we further define addition and multiplication as follows

a+ b = a+ b and a · b = a · b.

One may verify that these operations are indeed well-defined.

Exercise 0.7. The following exercise builds on Exercise 0.3.

1. Show that the equivalence classes of the relation ∼ on N×N =
{
(m,n) | m,n ∈N

}
defined

by
(m,n) ∼ (m′,n′) ⇐⇒ m+n′ = m′ +n

are in one-to-one correspondence with the set of integers. (We may define the set Z formally,
using N, as equivalence classes of this relation).

2. Show that the equivalence classes of the relation ∼ on Z×Z∗ =
{
(m,n) | m,n ∈ Z,n 6= 0

}
defined by

(m,n) ∼ (m′,n′) ⇐⇒ m · n′ = m′ · n
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are in one-to-one correspondence with the set of rationals. (We may define the set Q formally,
using Z, as equivalence classes of this relation).

Definition 0.8. A partition of A is a collection
{
Ai | i ∈ I

}
of non-empty subsets of A (I is some

indexing set) such that

1. A =
⋃
i∈IAi.

2. Ai ∩Aj = ∅ for all i, j ∈ Iwith i 6= j.

The ideas of an equivalence relation and partitions are closely related, as we show now.

Proposition 0.9. Let A be a non-empty set.

1. If ∼ defines an equivalence relation on A then the set of equivalence classes of ∼ form a
partition of A.

2. If
{
Ai | i ∈ I

}
is a partition of A then there exists an equivalence relation ∼ on A whose

equivalence classes are precisely the sets Ai, i ∈ I.

§§0.3. Number Theory

Definition 0.10. Given a,b ∈ Z, we say that b divides a and write b | a if a = bc for some c ∈ Z.
In this case, a is said to be a multiple of b, or a is said to be divisible by b.

1. Divisibility is a relation on Z, which is reflexive and transitive but not symmetric. In fact,
a | b and b | a ⇐⇒ b = ±a. This follows since b | a =⇒ |b| ≤ |a| (assuming a 6= 0).

2. If b | a1 and b | a2 then b | (a1 + a2) and b | ka1 for all k ∈ Z. Thus, b | (k1a1 + k2a2) for all
k1,k2 ∈ Z.

Proposition 0.11 (Division Algorithm). Given a,b ∈ Z with b 6= 0, there exist unique q, r ∈ Z

such that a = bq+ r and 0 ≤ r < |b|.

Proof. We first prove existence. Let a,b ∈ Z with b 6= 0. Without loss of generality, we may
assume b > 0 (if b < 0, we do the following considering −b and replace q by −q). Consider

S := {a− bx | x ∈ Z such that a− bx ≥ 0}.

Then, S is a non-empty subset of N (we may take x = −|a|). Hence, by the Well-Ordering Prop-
erty, there exists a minimal element in S. Call this r. Since r ∈ S, r = a− bq for some q ∈ Z and
r ≥ 0. We now only have to show that r < b. Suppose r ≥ b, then r− b = a− b(q+ 1) ≥ 0 and
thus r− b ∈ S. This contradicts the minimality of r. This proves the existence of q, r satisfying the
given properties.
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Suppose there are q, r,q′, r′ ∈ Z satisfying the given conditions. We have r− r′ = b(q′ − q). If
r 6= r′, we obtain |b| <

∣∣r− r′∣∣ which is a contradiction since 0 ≤ r, r′ < b. Thus, we get r = r′.
Since b 6= 0, we also get q = q′. Hence, q and r are unique.

Corollary 0.12. Suppose H is a subset of Z that is non-empty and closed under inverses and
addition. Then, H = nZ for a unique n ∈N where

nZ :=
{
nm | m ∈ Z

}
H is called a subgroup of the additive group Z, as we shall see later.

Proof. LetH be a subset of Z satisfying the given conditions. IfH = {0} thenH = nZ with n = 0. If
H 6= {0}, then H∩N+ is non-empty. Suppose n is the least element in H∩N+ (such an n exists by
the Well-Ordering Property). Then, nZ ⊆ H since H is closed under addition. Further, if m ∈ H
then, by the Division Algorithm, there exist q, r ∈ Z such that m = nq+ r with 0 ≤ r < n. But
r = m− nq ∈ H since m ∈ H and n ∈ H. If r > 0 then r ∈ H ∩N+ and the minimality of n is
contradicted. Hence, r = 0 andm = nq. Thus, H ⊆ nZ, giving us H = nZ.

Definition 0.13. Given a,b ∈ Z, not both zero, a greatest common divisor or gcd of a and b is a
positive integer d such that

1. d is a common divisor of a and b, i.e, d | a and d | b, and

2. if e is a common divisor of a and b, i.e, e | a and e | b, then e | d.

In the case a = b = 0, we define the gcd of a and b to be 0. We usually denote the gcd of a and b
as gcd(a,b).

We leave it as an exercise to the reader to come up with a similar definition for the least common
multiple (lcm). We denote the lcm of a and b as lcm(a,b).

Proposition 0.14 (Bézout’s Lemma). Given any a,b ∈ Z, the gcd of a and b exists and is unique.
Moreover, it can be expressed as a combinationma+nb for somem,n ∈ Z.

Proof. For a = b = 0, the proof is trivial. We hence assume that at least one of a and b is non-zero.
Consider

H = {ma+nb | m,n ∈ Z}.

H is a non-empty subset of Z that is closed under inverses and addition. Hence, by Corollary 0.12,
there exists a unique d ∈N+ such thatH = dZ. We leave it as an exercise to show that d is indeed
the gcd.

Proposition 0.15.

Let a,b, c ∈ Z. If a | bc and gcd(a,b) = 1 (a and b are coprime), then a | c.
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Proof. Bézout’s Lemma tells us that ma+ nb = 1 for some m,n ∈ Z. Multiplying throughout by
c, we get

mac+nbc = c.

Since a | ac and a | bc, we must have a | c.

Definition 0.16 (Prime Number). An integer p is said to be a prime number if it is greater than 1
and the only positive integers that divide p are 1 and p.

Corollary 0.17 (Euclid’s Lemma). If p is a prime number, and p | bc for some b, c ∈ Z, then p | b

or p | c.

Proof. Suppose p is prime and p | bc for some Z. If p | b, we are done. If p - b, then gcd(p,b) = 1.
By Proposition 0.15, p | c.

Proposition 0.18. There are infinitely many primes.

Euclid’s Proof. If there were only finitely many primes p1, . . . ,pk, then consider n = p1 · · · pk + 1.
If p is a prime that divides n then p 6= pi for all i ∈ {1, . . . ,k} (since n ≡ 1 (mod pi) for all i), which
is a contradiction since p1, . . . ,pk are assumed to be the only primes.

Proposition 0.19. If b ∈ Z and p is a prime number such that p - b, then there exists b′ ∈ Z such
that bb′ ≡ 1 (mod p). Moreover, b′ can be chosen such that 1 ≤ b′ < p and b′ is unique.

Proof. Since gcd(b,p) = 1, we have pu+bv = 1 for some u, v ∈ Z (Bézout’s Lemma). Thus, b′ = v
satisfies bb′ ≡ 1 (mod p). The uniqueness of b′ satisfying bb′ ≡ 1 (mod p) and 1 ≤ b′ < p follows
by replacing any v ∈ Z satisfying bv ≡ 1 (mod p) by the unique element b′ in the residue class of
v (mod p) such that 0 ≤ b′ < p. Moreover, b′ = 0 =⇒ 0 ≡ 1 (mod p) which is a contradiction.
Hence, 1 ≤ b′ < p.

Theorem 0.20 (Fundamental Theorem of Arithmetic). Every positive integer n can be written as a
product of primes. That is,

n = p1 · · · pk
for some primes p1, . . . ,pk (not necessarily distinct). Moreover, this factorisation is unique up to
rearrangement of terms. That is, if

n = q1 · · ·ql
where q1, . . . ,ql are primes then k = l and qi = pσ(i) for all i ∈ {1, . . . ,k} for some permutation σ
of {1, . . . ,k}.
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Proof. We first prove the existence by induction. If n = 1, the hypothesis holds with k = 0 since
the empty product is 1, by convention. Suppose n > 1 and the hypothesis holds for all positive
integers strictly less than n. If n is prime, the hypothesis clearly holds with k = 1. If n is not prime,
then n = n1n2 for some n1,n2 ∈ N+ with n1 < n and n2 < n. By the induction hypothesis, both
n1 and n2 are finite products of primes and hence, so is n. Thus, existence is proved by induction.

Next, we prove uniqueness. Suppose n ∈N+ is written as

n = p1 · · · pk

and also
n = q1 · · ·ql

where p1, . . . ,pk,q1, . . . ,ql are primes. We can induct on k. If k = 0, then n = 1 and hence l = 0.
Hence, k = l and pi’s are a permutation of qi’s (vacuously). Suppose that k > 1 and the result
holds for k− 1. Then,

p1 | n = q1 · · ·ql.

Hence, by an obvious extension of Euclid’s Lemma, p1 | qj for some j since qj is a prime and
p1 > 1, we must have p1 = qj. Thus,

p2 · · · pk = q1 · · ·qj−1 · qj+1 · · ·ql.

By induction hypothesis, k − 1 = l − 1, giving us k = l, and p2, . . . ,pk are a permutation of
q1, . . . ,qj−1,qj+1, . . . ql. Since we showed p1 = qj, it follows that p1, . . . ,pk is a permutation of
q1, . . . ,ql. Thus, uniqueness is also proved by induction.

Following is another version of the above theorem.

Theorem 0.21 (Fundamental Theorem of Arithmetic - Version 2). Every non-zero integer n can be
written as

n = ε · pe11 · · · p
eh
h

where ε ∈ {1,−1}, p1, . . . ,ph are distinct primes and e1, . . . , eh are positive integers and h ≥ 0.
Moreover, pi and ei are uniquely determined by n.

This allows us to associate with every prime an ‘exponent’ or ‘valuation’ on the set of non-zero
integers. Let p be a prime. We define νp : Z∗ →N as follows

νp(n) =

{
ei if p = pi for some 1 ≤ i ≤ h in the prime decomposition of n,
0 otherwise.

With this notation, we can write
n = ε ·

∏
p

pνp(n)

where the product is over all primes. This product is well defined since νp(n) = 0 for all but
finitely many primes.
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Proposition 0.22. Ifm,n ∈ Z∗, then

gcd(m,n) =
∏
p

pmin{νp(m),νp(n)}

lcm(m,n) =
∏
p

pmax{νp(m),νp(n)}

Corollary 0.23. Ifm,n ∈ Z∗ then |m · n| = gcd(m,n) · lcm(m,n).

We can extend the function νp to non-zero rationals (Q×) by defining

νp

(
m

n

)
:= νp(m) − νp(n) form,n ∈ Z∗

We leave it as an exercise to show that the above is indeed well-defined. This allows us to write
every non-zero rational number as a product of primes. Suppose r ∈ Q×, then we have

r = ε ·
∏
p

pνp(r)

where ε ∈ {1,−1} and the product is over all primes. This product is well-defined since νp(r) = 0
for all but finitely many primes.

Note: By convention, we often define νp(0) =∞. With this, the following is true.

Proposition 0.24. Let νp : Q→ Z∪ {∞} as defined above for some prime p. Then,

1. νp is surjective,

2. νp(r) =∞ ⇐⇒ r = 0,

3. νp(rs) = νp(r) + νp(s) for all r, s ∈ Q, and

4. νp(r+ s) ≥ min{νp(r),νp(s)} for all r, s ∈ Q.

Proof. Left as an exercise.

Remark 0.25. The function νp : Q → Z ∪ {∞} is called the p-adic valuation of Q. One can use it to
define a norm and a metric on Q, as follows:

|x|p := 2−νp(x) for all x ∈ Q.

with the convention 2−∞ := 0. One can see that

1. |x|p ≥ 0 and |x|p = 0 ⇐⇒ x = 0.

2. |xy|p = |x|p|y|p.
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3. |x+ y|p ≤ max
{
|x|p ,|y|p

}
≤|x|p +|y|p.

Thus, |·|p : Q→ R defines a norm on Q. Further, dp : Q×Q→ R defined by

dp(x,y) := |x− y|p for x,y ∈ Q

defines a metric on Q. Once can consider the completion of Q with respect to dp and this gives
rise to a set denoted by Qp called the field of p-adic numbers.1 We will not spend much time on
p-adic numbers in this document.

Definition 0.26. Given n ∈ N+, we define ϕ(n) to be the number of integers a ∈ N+ with
1 ≤ a ≤ n and gcd(a,n) = 1. ϕ is called Euler’s totient function.

We can obtain an explicit formula for ϕ(n) using a very basic counting principle - called the
inclusion-exclusion principle.

Theorem 0.27 (Principle of Inclusion and Exclusion). If A1, . . . ,Ar are finite sets, then

|A1 ∪ · · · ∪Ar| =
∑
i

|Ai|−
∑
i<j

∣∣Ai ∩Aj∣∣+ ∑
i<j<k

∣∣Ai ∩Aj ∩Ak∣∣− · · ·+ (−1)r−1|A1 ∩ · · · ∩Ar| .

Proof. The proof is trivial using induction on r.

For n ∈N+, suppose p1, . . . ,pr be the distinct primes that divide n. We have

n−ϕ(n) =
∣∣∣{a ∈N+ | 1 ≤ a ≤ n and gcd(a,n) 6= 1

}∣∣∣
=

∣∣∣∣∣ r⋃
i=1

Api

∣∣∣∣∣
where for any m ∈ N+ with m | n, Am :=

{
a ∈N+ | 1 ≤ a ≤ n andm | a

}
. Observe that |Am| =

n/m. By the Principle of Inclusion and Exclusion,

n−ϕ(n) =
∑
i

∣∣Api ∣∣−∑
i<j

∣∣∣Api ∩Apj ∣∣∣+ ∑
i<j<k

∣∣∣Api ∩Apj ∩Apk ∣∣∣− · · ·+ (−1)r−1
∣∣Ap1 ∩ · · · ∩Apr ∣∣

=
∑
i

∣∣Api ∣∣−∑
i<j

∣∣∣Apipj ∣∣∣+ ∑
i<j<k

∣∣∣Apipjpk ∣∣∣− · · ·+ (−1)r−1
∣∣Ap1···pr ∣∣

=
∑
i

n

pi
−
∑
i<j

n

pipj
+
∑
i<j<k

n

pipjpk
− · · ·+ (−1)r−1

n

p1 · · · pr

1Within the p-adic numbers, we also have the p-adic integers, denoted by Zp. Note this is not the set of residue
classes modulo p. Since we will not deal with p-adic integers in this document, we continue to use the notation Zn for
the set of residue classes modulo n. Another common notation for the same is Z/nZ.
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∴ ϕ(n) = n−
∑
i

n

pi
+
∑
i<j

n

pipj
−
∑
i<j<k

n

pipjpk
+ · · ·+ (−1)r

n

p1 · · · pr

= n

1−∑
i

1

pi
+
∑
i<j

1

pipj
−
∑
i<j<k

1

pipjpk
+ · · ·+ (−1)r

1

p1 · · · pr


We can express the above term as a product of r factors. This gives us the famous Euler’s Product
Formula:

ϕ(n) = n ·
∏
p|n

(
1−

1

p

)

Corollary 0.28 (Multiplicativity of ϕ). Form,n ∈N+, ϕ(mn) = ϕ(m) ·ϕ(n) iff gcd(m,n) = 1.

If n = pe11 · · · p
eh
h where p1, . . . ,pk are distinct primes and e1, . . . , eh ∈ N+, one may reduce the

product formula to the following

ϕ(n) =

h∏
i=1

pei−1i · (pi − 1)

In particular, this allows us to deduce that ϕ(n) is even for all n > 2.

Exercise 0.29. For n,d ∈N+, show that ∑
d|n

ϕ(d) = n.

Definition 0.30. Let n ∈ N+. A set {a1, . . . ,ak} of integers is called a reduced system of
residues (mod n) if the following hold:

1. gcd(ai,n) = 1 for all i ∈ {1, . . . ,k},

2. ai 6≡ aj (mod n) for all i, j ∈ {1, . . . ,k}, i 6= j, and

3. a ∈ Z, gcd(a,n) = 1 =⇒ a ≡ ai (mod n) for some i ∈ {1, . . . ,k}.

For example, {1, 3, 5, 7} is a reduced system of residues (mod 8).

Proposition 0.31. Let n ∈N+. Then,

1. {a ∈ Z | 1 ≤ a ≤ n and gcd(a,n) = 1} is a reduced system of residues (mod n).

2. Any reduced system of residues (mod n) has cardinality ϕ(n).

3. If {a1, . . . ,ak} is a reduced system of residues (mod n) and a ∈ Z such that gcd(a,n) = 1,
then {aa1, . . . ,aak} is also a reduced system of residues (mod n).
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Theorem 0.32 (Euler’s Theorem). Letn ∈N+ and a ∈ Z. If gcd(a,n) = 1, then aϕ(n) ≡ 1 (modn).

Proof. Let {a1, . . . ,ak} be a reduced system of residues (mod n). Then, we proved that k = ϕ(n)
and {aa1, . . . ,aak} is also a reduced system of residues (mod n). With a little bit of effort, we can
show that

k∏
i=1

aai ≡
k∏
i=1

ai (mod n) =⇒ aϕ(n) ·
k∏
i=1

ai ≡
k∏
i=1

ai (mod n)

∴ aϕ(n) ≡ 1 (mod n)

Corollary 0.33 (Fermat’s Little Theorem). If p is a prime and a ∈ Z, then ap ≡ a (mod p).

Theorem 0.34 (Wilson’s Theorem). Let n ∈N+ with n > 1. n is prime iff (n− 1)! ≡ −1 (mod n).

Proof. If p = 2 or 3, the result clearly holds. Suppose p is a prime greater than 3. For any a ∈ Z,
there is a unique a′ ∈ Z with 1 ≤ a′ ≤ p− 1 and aa′ ≡ 1 (mod p) (Proposition 0.19). We see that

a = a′ ⇐⇒ a2 ≡ 1 (mod p) ⇐⇒ p | (a− 1)(a+ 1) ⇐⇒ a = 0 or a = p− 1

Hence the p − 3 numbers 2, . . . ,p − 2 can be paired as (a,a′) where 2 ≤ a,a′ ≤ p − 2, aa′ ≡
1 (mod p). Moreover, a 6= a′ in any of these pairs. This tells us that 2 · 3 . . . · (p− 2) ≡ 1 (mod p).
This gives us

(p− 1)! ≡ (p− 1) (mod p) =⇒ (p− 1)! ≡ −1 (mod p)

We leave the converse as an exercise.

Theorem 0.35 (Chinese Remainder Theorem). If n1, . . . ,nk are pairwise coprime positive integers,
that is, n1, . . . ,nk ∈ N+ and gcd(ni,nj) = 1 for all i, j ∈ {1, . . . ,k}, i 6= j, and if c1, . . . , ck are any
integers, then the congruences

x ≡ ci (mod ni) for i ∈ {1, . . . ,k}

have a solution, which is unique (mod n1 · · ·nk).

Proof. Let n be the product n1 · · ·nk and let mi = n/ni for i ∈ {1, . . . ,k}. Since ni’s are pairwise
coprime, we get gcd(mi,ni) = 1 for all i ∈ {1, . . . ,k} Then, the congruence

mix ≡ ci (mod ni)

has a solution, say xi, for each i. Consider x = m1x1 + · · · +mkxk. For any i ∈ {1, . . . ,k}, we
see that ni | mj for all j 6= i. Hence, x as chosen above satisfies all the congruences. This proves
existence. We leave the proof of uniqueness (mod n) as an exercise.
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§1. Group Theory

§§1.1. Introduction

Definition 1.1. Suppose G is a nonempty set. A binary operation on G (or a law of composition)
is a function ∗ : G×G→ G. For any a,b ∈ Gwe denote ∗(a,b) as a ∗ b or simply ab.

Example 1.2. Addition, subtraction and multiplication are binary operations on R. Addition and
subtraction are binary operations on Rm×n, the set of m × n real matrices. We denote the set
of n× n real, invertible matrices by GLn(R) (this is called the general linear group, as shall be
discussed later). Multiplication is a binary operation on GLn(R). Note however that addition
is not a binary operation on GLn(R) since the sum of two invertible matrices may be singular.
GL1(R) is denoted as R×, the set of non-zero real numbers. Let S be any non-empty set and let
M denote the set of all functions from S to S. Then, function composition is a binary operation on
M.

Definition 1.3. A binary operation ∗ on a set G is said to be associative if (a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a,b, c ∈ G.

Definition 1.4. A binary operation ∗ on a set G is said to be commutative if a ∗ b = b ∗ a for all
a,b ∈ G.

Proposition 1.5 (Generalised Associative Law). Let G be a set and let ∗ be an associative binary
operation onG. For any g1, . . . ,gn ∈ G, the product g1 ∗ · · · ∗ gn is independent of how we bracket
it.

Proof. This is left as an exercise. The idea is to use induction on n. First show the basis. Then,
assume that for any k < n, any bracketing of of k elements b1 ∗ · · · ∗ bk can be reduced to b1 ∗
(b2 ∗ (· · · bk)) · · · ). Next, argue that a1 ∗ · · · ∗an can be reduced to (a1 ∗ · · · ∗ ak) ∗ (ak+1 ∗ · · · ∗an)
for some k < n. Apply the induction condition on each subproduct to complete the proof.

Definition 1.6. A group is an ordered pair (G, ∗) where G is a set and ∗ is a binary operation on G
such that

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a,b, c ∈ G, that is, ∗ is associative,

2. there exists an element e ∈ G, called an identity of G, such that a ∗ e = e ∗ a = a for all
a ∈ G, and

3. for each a ∈ G, there is an element a−1 ∈ G, called an inverse of a, such that a ∗ a−1 =
a−1 ∗ a = e.

We say that G is a group under ∗ if (G, ∗) is a group. If ∗ is clear from context, we may simply say
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that G is a group. We further say that G is a finite group if G is a finite set. Note that any group is
nonempty by virtue of the existence of an identity element.

Definition 1.7. We say that a group (G, ∗) is abelian if a ∗ b = b ∗ a for all a,b ∈ G.

Definition 1.8. Let G be a group. We define the order of G as the cardinality of G, denoted by |G|.

Example 1.9.

1. Z, C, Q and R are all groups under the addition operation with e = 0 and a−1 = −a, for
all a. Q×, R×, C×, Q+, R+ are all groups under the multiplication operation with e = 1

and a−1 = 1/a, for all a. Note however that Z∗ is not a group under the multiplication
operation since the element 2 (for instance) does not have an multiplicative inverse in Z∗.
We shall take the associative laws of these sets under addition and multiplication as given.

2. Rotation matrices in 2-dimensions with multiplication also form a group. This is called the
SO2(R) group. This is the set of special orthogonal matrices - the set of 2× 2 orthogonal
matrices with determinant 1. On the other hand, the set of 2× 2 orthogonal matrices forms
another group, called the orthogonal group, O2(R).

3. Consider the group of non-zero complex numbers, C× under multiplication (GL1(C)). This
also forms a group under multiplication. For any n ∈ N+, consider the nth root of unity,
defined as

ωn = cos
2π

n
+ ι sin

2π

n

The set containing all powers of ωn forms a finite group of order n under complex multi-
plication, whose elements are precisely the n roots of the polynomial zn = 1. This group is
called the cyclic group generated byωn, and is denoted as µn.

4. For n ∈ N+, Zn is an abelian group of order n under the addition operation with e = 0

and the inverse of a defined as −a. We denote this group as Zn. Notice that Zn behaves
similar to the cyclic group generated byωn and can be thought of as being generated by the
equivalence class 1.

However, Zn does not form a group under multiplication. This is because not all numbers
have a multiplicative inverse modulo n. From number theory, we know that a number a has
a multiplicative inverse modulo n if and only if (a,n) = 1. The set of equivalence classes a
which have a multiplicative inverse modulo n form an abelian group under multiplication.
We denote this group as Z×n . The order of this group is equal to the number of integers be-
tween 1 and nwhich are co-prime with n. This is given precisely by Euler’s totient function,
ϕ. Thus, Z×n forms an abelian group of orderϕ(n) under multiplication. We sometimes also
denote this group as Un.

Theorem 1.10. Let G be a group under operation ∗. Then

1. The identity of G is unique
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2. For each g ∈ G, g−1 is unique

3. For each g ∈ G, (g−1)−1 = g

4. For a,b ∈ G, (a ∗ b)−1 = b−1 ∗ a−1

Proof.

1. Let f and g be two identities of G. We have f ∗ g = f and f ∗ g = g. Thus f = g.

2. Let a,b ∈ G be two inverses of some g ∈ G and let e be the identity of G. We show that
b = a.

b = b ∗ e (definition of e)
= b ∗ (g ∗ a) (since a is an inverse of g)
= (b ∗ g) ∗ a (associativity)
= e ∗ a (since b is an inverse of g)
= a (definition of e)

3. We have g−1 ∗ g = g ∗ g−1 = e, implying that (g−1)−1 = g.

4. Using the generalised associative law (Proposition 1.5) on (a ∗ b) ∗ (b−1 ∗ a−1) and (b−1 ∗
a−1) ∗ (a ∗ b) gives the required result.

Notation: For any group (G, ∗), we denote a ∗ b as ab. For some group G, g ∈ G and n ∈ Z+,
we write x · · · x (n times) as xn. For n < 0,n ∈ Z, we define xn := (x−1)−n, which is the same as
(x−n)−1 (Prove!) We usually denote the identity element of any group as 1 and we define x0 := 1.

Definition 1.11. Let G be a group and let x ∈ G. Let n be the smallest positive integer such that
xn = 1. n is called the order of x and is denoted by |x|. If no such positive power exists, we say
that x is of infinite order.

Proposition 1.12. Any element of a finite group has finite order.

Proof. Let G be a group and let x ∈ G. It suffices to show that xn = 1 for some n ∈ N. Note that
x0, . . . , x|G| are|G|+ 1 elements of G. Since the cardinality of G is|G|, we may conclude that two of
these must be equal (pigeonhole principle). Thus,

xn = xm

for some 0 ≤ n < m ≤|G|. This gives us

1 = xm−n

Sincem−n ∈N, the claim follows.
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§§1.2. Dihedral Groups

We now look at importance class of groups whose elements are symmetries of geometric objects.
The simplest objects to consider are regular n-gons. For each n ∈ Z+, n ≥ 3, we let D2n be the
set of symmetries of a regular n-gon. A symmetry is any rigid motion of the n-gon such that after
this motion, the n-gon exactly covers the original n-gon. This can be thought of as first labelling n
vertices as 1, 2, . . . ,n and then describing a symmetry uniquely by the corresponding permutation
σ of {1, 2, . . . ,n}.

We make D2n a group by defining st for s, t ∈ D2n to be the symmetry obtained by first applying
t then s. That is, if s and t have the permutations σ and τ respectively on the vertices then st has
the permutation σ ◦ τ.

We now show that |D2n| = 2n. Observe that vertex 1 can be mapped to any one of the n vertices.
Let’s say that it is mapped to vertex i. Now, since vertex 2 is adjacent to vertex 1, it must be
mapped to either i+ 1 or i− 1. The position of vertex 2 fixes the entire permutation. Thus, we
have 2n possible permutations, and so |D2n| = 2n. We call D2n the dihedral group of order 2n.

These 2n symmetries are n rotations by 2πi/n radians about the center for i = 1, 2, . . . ,n and the
n reflections about the n lines of symmetry.

Let r be the clockwise rotation of the n-gon by 2π/n radians and let s be the reflection symmetry
that reflects the n-gon about the axis passing through vertex 1 and the center. The following
properties follow (proof is omitted):

1. 1, r, r2, . . . , rn−1 are all distinct and rn = 1. Thus, |r| = n

2. |s| = 2

3. s 6= ri for any i

4. sri 6= srj for all 0 ≤ i, j ≤ n− 1, i 6= j. Thus, we have

D2n =
{
1, r, r2, . . . , rn−1, s, sr, sr2, . . . srn−1

}
.

5. rs = sr−1 (Since r and s do not commute, D2n is non-abelian) 2

6. ris = sr−i

We conclude that all elements of D2n can be expressed uniquely as skri where k is 0 or 1 and
0 ≤ i ≤ n − 1. Moreover, identities (1), (2) and (6) will easily allow us to obtain this unique
representation. Consider n = 12. For example, we have

(sr9)(sr6) = s(r9s)r6 = s(sr−9)r6 = s2r−3 = r−3 = r9

Finally, another common way of writing the dihedral group, is as a presentation3 as follows

D2n =
〈
r, s | rn = s2 = 1; rs = sr−1

〉
.

2Note that to claim D2n to be non-abelian, we need r 6= r−1. This is true for n ≥ 3.
3A presentation is another form of defining a group G. We have a set of generators, S, such that every element of G

can be written as a product of these generating elements. We also have a set of relations, R, among these generators.
The group is then presented as 〈S | R〉.
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§§1.3. Quaternion and Heisenberg Groups

The quaternion group is a group of order 8, defined as follows

Q8 = {±1,±ı̂,±̂,±K}

where each element is a 2 × 2 complex matrix of determinant 1. Hence, this group lies within
GL2(C). The matrices are defined as follows

1 =

[
1 0

0 1

]
ı̂ =

[
ι 0

0 −ι

]
̂ =

[
0 1

−1 0

]
k̂ =

[
0 ι

ι 0

]
In Q8, we have the following relations

ı̂2 = ̂2 = k̂2 = −1

ı̂̂ = k̂ = −̂̂ı

̂k̂ = ı̂ = −k̂̂

k̂ı̂ = ̂ = −ı̂k̂

ı̂̂k̂ = −1

The Heisenberg group is a group of 3× 3 upper-triangular matrices, defined as follows

H(R) =


1 a b

0 1 c

0 0 1

 | a,b, c ∈ R

 .

H(R) forms an infinite non-abelian group under matrix multiplication, where each element has
determinant 1.

§§1.4. Symmetric Groups

LetΩ be any non-empty set and SΩ be the set of all bijections fromΩ toΩ (or permutations ofΩ).
The set SΩ is a group under function composition, ◦, since function composition is associative, the
identity is the identity map on Ω and every bijection has an inverse bijection. In the case where
Ω = {1, . . . ,n}, we denote SΩ as Sn. Sn is called the symmetric group of order n. It is easy to show
that |Sn| = n!. We now illustrate a convenient notation to write elements of Sn, called the cycle
decomposition. A cycle is a string of integers that cyclically permutes the integers of this string,
leaving all other integers fixed. For example, (a1 a2 . . . ak) sends a1 to a2, a2 to a3, . . . ,ak−1 to ak
and ak to a1. In general, any element σ of Sn can be rearranged and written as k (disjoint) cycles
as

σ = (a1 . . . am1)(am1+1 . . . am2) . . . (amk−1+1 . . . amk)

To find where an element i is sent to by a permutation, we simply need to find the element written
after i in the cycle decomposition. Any permutation σ can be easily written as its cycle decompo-
sition using the following algorithm.

1. To start a new cycle, pick the smallest number in {1, . . . ,n} that has not appeared in a previ-
ous cycle. Call it a. Begin the new cycle (a
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2. Let σ(a) = b. If b = a, close the cycle and return to step 1. If b 6= a, write b next to a so that
the cycle becomes (ab

3. Let σ(b) = c. If c = a, close the cycle and return to step 1. If c 6= a, write c next to b and
repeat this step with c as b until the cycle closes.

The length of a cycle is the number of integers appearing in the cycle. A cycle of length l is called an
l-cycle. (Notice that an l-cycle has order l) By convention, we omit 1-cycles. Thus, if some element
i does not in a cycle decomposition of a permutation, it is understood that the permutation fixes
i. The identity permutation is written as 1. The final step in the algorithm is thus to remove all
1-cycles. Note that

(1 3) (1 2) = (1 2 3) and (1 2) (1 3) = (1 3 2)

This shows that Sn is non-abelian for all n ≥ 3. Note that since disjoint cycles permute elements
in disjoint sets, disjoint cycles commute. Thus, rearranging the cycles in any product of disjoint
cycles does not change the permutation.

Remark 1.13. We define an equivalence relation on Ω (any general non-empty set), with a ∼ b if
b = σk(a) for some k. Here σk denotes the permutation σ composed k times. It is easy to verify
that this is an equivalence relation. Each disjoint cycle in the cycle decomposition of σ represents
an equivalence class of ∼. (Verify!)

Note that every symmetry transformation of an equilateral triangle can be associated with a
unique permutation of the vertices. Likewise, every permutation of the vertices of an equilat-
eral triangle can be associated with (the same) symmetry transformation. We see that D6 and S3
are essentially the same group. This will be made more precise when we discuss isomorphisms.

§§1.5. Conjugacy

Recall from linear algebra that an n× n real symmetric matrix, A can be diagonalised. That is,
if λ1, . . . , λn are the eigenvalues of A, then A ∼ Λ, where Λ is a diagonal matrix containing the
eigenvalues. That is, CAC−1 = Λ for an orthogonal matrix, C, whose column vectors are the
corresponding eigenvectors ofA. This very idea can be made more abstract and applied to groups,
in general.

Definition 1.14. Let G be a group and g,h ∈ G. We say that g is a conjugate of h if there exists an
x ∈ G such that h = xgx−1.

Proposition 1.15. Conjugacy is an equivalence relation on the group G

Proof. We prove reflexivity, symmetry and transitivity.

1. For reflexivity, we may take x to be identity to give us that h ∼ h for all h ∈ G.

2. Suppose h ∼ g. Then, h = xgx−1 for some x ∈ G. Left-multiplying by x−1 and right-
multiplying by x, we get g = x−1hx = x−1h(x−1)−1. Since, x−1 ∈ G, we have that g ∼ h,
proving symmetry.
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3. Suppose h ∼ g and l ∼ h. Then, there exist x,y ∈ G such that h = xgx−1 and l = yhy−1.
Substituting h, we see that l = (yx)g(x−1y−1) = (yx)g(yx)−1. Since yx ∈ G, we have that
l ∼ g, proving transitivity.

The equivalence classes of the conjugacy relation are called conjugacy classes. Thus, all of G is a
disjoint union of conjugacy classes. We see that for any group G, the identity element is the only
element in its conjugacy class. If G is abelian, then gag−1 = a for all a,g ∈ G. Thus, each element
in an abelian group is part of a unique conjugacy class. We shall typically denote the conjugacy
class of g ∈ G as C(g).

Proposition 1.16. Let G be a group and let g,h ∈ G belong to the same conjugacy class, i.e, g ∼ h.
Then, |g| = |h|

Proof. Since g ∼ h, we know that g = xhx−1 for some x ∈ G. Now

gn = (xhx−1)n = xhnx−1

Thus, gn = 1 ⇐⇒ hn = 1.

We want to understand what are the conjugacy classes in Sn. We will first begin by analysing the
conjugacy classes of S3. Using our familiar cycle decomposition notation, we may define S3 as
follows

S3 =
{
1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)

}
.

The conjugacy class of a 2-cycle cannot contain any 3-cycle or the identity element (since they have
different orders). With a little bit of work, we can show that the number of conjugacy classes are
precisely 3 - the identity, the 2-cycles and the 3-cycles. Let us relate these numbers with partitions
of natural numbers. We first define what are partitions.

Definition 1.17. Let n ∈ N+. A partition of n is a tuple λ = (λ1, . . . , λl) of positive integers
λ1 ≥ . . . ≥ λl such that λ1 + · · ·+ λl = n.

The number of partitions of 3 is equal to 3 and these are given by (1, 1, 1), (2, 1) and (3). This
number is exactly equal to the number of conjugacy classes of S3. For a general symmetric group,
Sn, the number of conjugacy classes is given precisely by the number of partitions of n.

Suppose τ = (i1, . . . , ik) is a k-cycle. Suppose σ ∈ Sn. We want to show that

στσ−1 =
(
σ(i1), . . . ,σ(ik)

)
.

We have

στσ−1(σ(i1)) = στ(σ
−1σ)(i1)

= στ(i1)

= σ(i2)
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Similarly, we show that the two permutations have the same effect on all k elements, σ(i1), . . . ,σ(ik).
Now, suppose x /∈ {σ(i1), . . . ,σ(ik)} ⇐⇒ σ−1(x) 6= is for any s = 1, . . . ,k. We have

στσ−1(x) = σσ−1(x) (since σ−1(x) is a fixed point of τ)
= x

Hence, the conjugate of a k-cycle is also a k-cycle. We may now explicitly construct a permutation
σ to show that both 3-cycles are conjugates. Similarly, we may show that all 2-cycles form a
conjugacy class.

Now, we look at conjugates of any permutation in Sn. Suppose σ ∈ Sn and σ = τ1 · · · τk where
τ1, . . . , τk are disjoint cycles of length at least 2. Let γ ∈ Sn. We have

γσγ−1 = γ(τ1 · · · τk)γ−1

= (γτ1γ
−1) · · · (γτkγ−1)

Here γτiγ−1 is a conjugate of τi. Hence, the cycle structure of the conjugate of the permutation
remains the same as the original permutation. Moreover, the conjugates of disjoint cycles are also
disjoint.

For example, consider S5 and the permutation

τ = (1)(2)(3 4 5)

This corresponds to the partition (3, 1, 1) of 5. Moreover, given any σ ∈ S5, the conjugate of τ will
be

(σ(1))(σ(2))
(
σ(3)σ(4)σ(5)

)
Thus, the conjugacy class of τ is precisely the set{

(σ(1))(σ(2))
(
σ(3)σ(4)σ(5)

)
| σ ∈ S5

}
Thus, corresponding to every partition of 5, we have a unique conjugacy class of S5. In general,
corresponding to every partition of n, we have a unique conjugacy class of Sn. Thus, the number
of conjugacy classes in Sn is p(n), the number of partitions of n.

§§1.6. Odd and Even Permutations

Proposition 1.18. Every permutation can be written as a product of transpositions (2-cycles)

Proof. We first express a k-cycle as a product of 2-cycles. Consider the k-cycle (a1 . . . ak). Verify
that we have

(a1 . . . ak) = (a1 ak)(a1 ak−1) . . . (a1 a3) (a1 a2)

We have thus shown that every k-cycle is a product of transpositions. We also know that any
permutation can be written as a product of disjoint cycles. Hence, the claim follows.

Definition 1.19. A permutation σ ∈ Sn is called even (odd) if σ is a product of an even (odd)
number of transpositions
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We must prove that this is indeed a well-defined notion (that is, every permutation must either be
an even permutation or an odd permutation). Consider the Vandermonde polynomial, defined as

P(x1, . . . , xn) =
∏

1≤j<i≤n
(xi − xj)

Consider a permutation σ ∈ Sn. We define

σP :=
∏

1≤j<i≤n
(xσ(i) − xσ(j))

If σ is a transposition, then σP = −P. Thus, if σ is an even permutation, we see that σP = P

whereas if σ is an odd permutation, we have σP = −P. Thus, σ must either be even or odd, as
determined by its effect on P. Using this idea, we also trivially see that the product of two even
permutations is even, the product of two odd permutations is even and the product of an even
permutation and an odd permutation is odd. Moreover, the inverse of an even permutation is also
an even permutation. The identity permutation is also an even permutation. We thus see that the
set of even permutations forms a group by itself! We call this group An, the alternating group of
degree n.

Proposition 1.20. The order of An is n!/2.4

Proof. To show this, we set up a bijection between the set of even permutations and the set of
odd permutations. Let Z = Sn \An. We define a map ϕ : An → Z, defined by ϕ(σ) = (1 2)σ.
This is a one-to-one map from An to Z. This is also an onto map since given any τ ∈ Z, we have
ϕ
(
(1 2) τ

)
= τ. Thus, ϕ is a bijection and hence|An| = |Z|. But we know that|Sn| = n! = |An|+|Z|

(since An and Z are disjoint). This gives us that |An| = n!/2.

Remark 1.21. The groupA5 is fundamental in proving that there exists a quintic polynomial which
is not solvable by radicals.

§§1.7. Subgroups and Cyclic Groups

Definition 1.22. Let G be a group. A subset H of G is a subgroup of G if H is non-empty and
closed under products and inverses. That is, x,y ∈ H implies that x−1 ∈ H and xy ∈ H. If H is a
subgroup of G, we write H ≤ G.

Example 1.23.

1. A3 is a subgroup of S3.

2. SLn(R), the group of n×n real matrices with determinant 1, is a subgroup ofGLn(R) (under
matrix multiplication).

4This assumes n > 1. For n = 1, the group Sn is the trivial group, and so is An. For this case, we have|An| = |Sn| =
1.
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3. On(R) is a subgroup of GLn(R) while SOn(R) is a subgroup of On(R).

4. The set of complex numbers of unity magnitude, denoted as S1, forms a group under mul-
tiplication and is in fact a subgroup of C×. The cyclic group generated by ωn, which we
denote as µn, is a (finite) subgroup of S1.

Theorem 1.24 (Subgroup Criterion). A subset H of a group G is a subgroup of G if and only if

1. H 6= ∅.

2. for all x,y ∈ H, xy−1 ∈ H.

Proof. We only prove the converse. Let x be any element ofH (such an element exists sinceH 6= ∅).
We have xx−1 ∈ H =⇒ 1 ∈ H. For any h ∈ H, we have 1h−1 ∈ H =⇒ h−1 ∈ H. Thus,H is closed
under inverses. For any x,y ∈ H, we know that y−1 ∈ H, and thus, x(y−1)−1 ∈ H =⇒ xy ∈ H.
Hence, H is also closed under multiplication.

Let G be any group and g ∈ G. We define the subgroup generated by g to be the smallest subgroup
of G containing g. We leave it as an exercise to verify that this is the group 〈g〉 := {1,g±1,g±2, . . .}.
Groups generated by a single element are called cyclic groups.

Proposition 1.25. SupposeH is a cyclic group generated by x,H = 〈x〉. If the order ofH is infinite,
then H =

{
1, x±1, x±2, . . .

}
, all of which are distinct elements. If H is of order n, then the order of

x is also n and H = {1, x, . . . , xn−1}.

Proof. Suppose the order of H is infinite and H is generated by x. All we need to show is that
every power of x is distinct. Suppose that xm = xn for some m > n. This gives us xm−n = 1. Let
d = m− n, giving us xd = 1. If l ∈ Z, then by the Division Algorithm, l = dq+ r where q ∈ Z

and 0 ≤ r < d. Now
xl = xdq+r = (xd)qxr = xr

Hence, every integral power of x is xr for some 0 ≤ r < d. Thus, H is finite, which is a contradic-
tion. Hence, xm 6= xn form 6= n.

Suppose H = 〈x〉 and |H| = n. Since H is finite, {1, x±1, x±2, . . .} is a finite list. As proved before,
xd = 1 for some d ∈ N+. Let m be the smallest positive integer such that xm = 1 (such a number
exists because of Well-Ordering Property). Thus |x| = m. This means that {1, x, . . . , xm−1} is a
group, which is precisely the same as H. Equating the number of elements, we get m = n. Thus,
|x| = n.

Proposition 1.26. Let H = 〈x〉.

1. If |x| is infinite, then |xa| is also infinite for any a 6= 0.
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2. If |x| = n, then
|xa| = n

gcd(a,n)

Proof. The first part is rather trivial to prove and is left as an exercise. We now prove the second
part. Let d = (a,n). We have

(xa)n/d = (xn)a/d

Since the order of x is n and a/d is an integer, we see that (xa)n/d = 1. It is also not too difficult to
show that nom < n/d satisfies (xa)m = 1.

Recall Corollary 0.12, which states that any subset of Z that is closed under inverses and addition
must be of the form nZ for some n ∈ Z. In other words, any subgroup of Z is of the form
nZ. Notice that Z is a cyclic group, generated by 1 or −1, and all its subgroups are also cyclic
subgroups. This idea extends to all cyclic groups, as stated next.

Proposition 1.27. Suppose H is a cyclic group and K ≤ H. Then, K is cyclic.

Proof. If K is the trivial subgroup (containing only the identity), it is clearly cyclic. Suppose K is
non-trivial. Then, there is a non-zero integer n for which xn ∈ K. Since K is closed under inverses,
x−n ∈ K. Hence, there exists a d ≥ 1 such that xd ∈ K. Let d be the smallest such integer (such a d
exists because of Well-Ordering Property). We claim that K = 〈xd〉. This is easily proven using the
division algorithm, and is left as an exercise.

Theorem 1.28. Let H = 〈x〉 be a finite cyclic subgroup of order n and m ∈ N+. Then, H has a
subgroup of order m if and only if m | n. Moreover, for each divisor m of n, there is exactly one
subgroup of order m in H. (Alternatively, there is a one-one correspondence between subgroups
of H and divisors of n).

Proof. We know that |x| = n and that every subgroup of H is cyclic. Suppose K = 〈xa〉 with a ≥ 1.
Proposition 1.26 tells us that |xa| = n/d where d = gcd(a,n). Thus, the subgroup 〈xa〉 is mapped
to the divisor gcd(a,n). Conversely, assume that d is a divisor of n. Then,∣∣∣xn/d

∣∣∣ = n

gcd
(
n
d ,n

) =
n

n/d
= d

Hence, we map the divisor d to the subgroup generated by xn/d. It remains to show that for each
divisor d of n, there exists a unique subgroup of order d.

Suppose K ≤ H and |K| = d. We must show that K = 〈xn/d〉. Since K is cyclic, there is a b ∈ N+

such that K = 〈xb〉. This implies that |K| = n/ gcd(b,n). Thus, gcd(b,n) = n/d =⇒ n/d | b.
Thus b = (n/d) · c for some c ∈ Z. Now,

xb = xc(n/d) ∈ 〈xn/d〉
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Thus, K ≤ 〈xn/d〉. However, order of both these groups are equal to d, which concludes that that
the two groups are equal, or K = 〈xn/d〉.

Using this theorem, we can in fact find the total number of subgroups of H (total number of
divisors of n) and also construct each of these subgroups with the help of the prime-factorisation
of n.

Proposition 1.29. Suppose H = 〈x〉.

1. If H is infinite, then H has only one other generator, x−1.

2. If |H| = n then xa generates H if and only if gcd(a,n) = 1.

Proof. First consider that H is infinite. We have shown that H = {1, x±1, x±2, . . .}, all of which are
distinct elements. Suppose xa also generates H. Then, H = {1, x±a, x±2a, . . .}. Comparing the two
forms, x = xna for some n ∈ Z∗. This gives us xna−1 = 1. If na− 1 is non-zero then x generates
a finite cyclic group, which is a contradiction. Hence, na = 1. This gives us precisely the two
solutions a = ±1. Thus, any infinite cyclic group has only two possible generators x or x−1. We
leave it to the reader to verify that x−1 indeed generates H.

Now suppose H is finite. |H| = n =⇒ |x| = n. We know from Proposition 1.26 that |xa| = n/d
where d = gcd(a,n). If xa also generates H then |xa| = n. This gives us d = 1. Conversely,
suppose that gcd(a,n) = 1. Then, |xa| = n and hence, xa generates a subgroup of H of order n.
However, the only subgroup of H of order n is H itself. Hence, xa generates H. This also gives us
that the number of generators of H are ϕ(n).

Example 1.30.

1. Consider the multiplicative group Z×2 =
{
1, 5, 7, 11

}
. This is a group of order 4. However,

all its elements have order either 1 or 2. Hence, this group is not cyclic since a cyclic group
of order 4must have an element of order 4.

2. Consider the real Heisenberg group,H(R) which is a subgroup of SL3(R). Consider a matrix

M =

1 a b

0 1 c

0 0 1


whereM is not an identity matrix. We may decomposeM as

M =

1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

I

+

0 a b

0 0 c

0 0 0


︸ ︷︷ ︸

N

One may verify that N3 = 0 and

N2 =

0 0 ac

0 0 0

0 0 0
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Now,

Mn = (I+N)n = I+nN+

(
n

2

)
N2

For this matrix to generate a finite cyclic group, we need Mn = I for some n. This gives us
a = b = c = 0, which is a contradiction since M 6= I. Thus, every non-identity matrix in
H(R) generates an infinite cyclic group.
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§2. Group Homomorphisms

Definition 2.1. Let (G, ?) and (H, �) be two groups. A mapϕ : G→ H is a (group) homomorphism
if ϕ satisfies

ϕ(a ? b) = ϕ(a) �ϕ(b) for all a,b ∈ G.

This is more compactly written as
ϕ(ab) = ϕ(a)ϕ(b)

where the product is the “appropriate” group operation.

Definition 2.2. Let G,H be two groups. A map ϕ : G → H is called an isomorphism if ϕ is a
homomorphism and ϕ is a bijection. In this case, we say that G and H are isomorphic and write
G ∼= H.

Definition 2.3. Let G be a group. An automorphism is an isomorphism ϕ from G to itself.

Example 2.4. Following are some examples of homomorphisms

1. Let F be any field5 and det : GLn(F)→ F× be the determinant function. This is an example of
a homomorphism since det(AB) = det(A)det(B). F× is the multiplicative group associated
with the field F.

2. Consider the symmetric group Sn and define f : Sn → {1,−1} by taking f(σ) = sign(σ) where
sign(σ) is −1 if σ is an odd permutation and 1 if it is an even permutation. f is a homomor-
phism since sign(στ) = sign(σ) sign(τ).

3. Suppose H ≤ G where G is any group. The identity map i : H → G is a homomorphism,
trivially.

4. Consider ϕ : C× → R× defined as ϕ(z) = |z| for all z ∈ C×. ϕ is a homomorphism.

5. Consider φ : R → R× defined by φ(x) = ex for all x ∈ R. This is also a homomorphism,
since φ(x+ y) = ex+y = exey = φ(x)φ(y).

6. Consider the group

G =

{[
1 x

0 1

]
| x ∈ R

}
≤ GL2(R).

One can verify that the map ϕ : G→ R defined as

ϕ

[1 x

0 1

] = x

is an isomorphism. Hence G ∼= R.

5We will define a field later while discussing rings. For now, the reader may assume the field to be R or C.



§2 Group Homomorphisms 26

Definition 2.5. Let G be a group and a ∈ G. The map Ta : G → G defined as Ta(g) = ag for all
g ∈ G, is called translation by a.

Ta is a bijection from G to G but it is not a homomorphism, in general. Notice however that every
element a ∈ G gives rise to a permutation of G (assuming G is finite). Let SG denote the group of
permutations of G and define ϕ : G → SG defined as ϕ(a) = Ta. We claim that ϕ is an injective
homomorphism. To show that ϕ is a homomorphism, we need to show that ϕ(ab) = ϕ(a)ϕ(b)
for all a,b ∈ G. It is trivial to verify that Tab = TaTb. We will prove the injectivity of ϕ soon while
proving Cayley’s Theorem.

Proposition 2.6. Let G,H be groups and let ϕ : G→ H be a homomorphism. Then,

1. ϕ(1) = 1,

2. (ϕ(a))−1 = ϕ(a−1) for all a ∈ G, and

3. the image of G under ϕ is a subgroup of H, that is,

imϕ =
{
ϕ(a) | a ∈ G

}
≤ H

Proof. We have
ϕ(1 · 1) = ϕ(1) ·ϕ(1)

Also, since 1 · 1 = 1, we have

ϕ(1) ·ϕ(1) = ϕ(1) =⇒ ϕ(1) = 1

For any a ∈ G, we have
ϕ(aa−1) = 1 = ϕ(a) ·ϕ(a−1)

This gives us
(ϕ(a))−1 = ϕ(a−1)

The proof of the third part is left as an exercise and follows directly from the first two parts.

Proposition 2.7. Suppose ϕ : G → H is an isomorphism. Then, ϕ−1 : H → G is also an isomor-
phism.

Proof. Suppose x,y ∈ H. We show that ϕ−1(xy) = ϕ−1(x)ϕ−1(y). Let ϕ(g) = x and ϕ(h) = y

where g,h ∈ G. Since ϕ is a homomorphism, we have

ϕ(gh) = ϕ(g)ϕ(h) = xy =⇒ ϕ−1(xy) = gh = ϕ−1(x)ϕ−1(y)

Definition 2.8. Let G,H be groups and let ϕ : G → H be a homomorphism. The kernel of ϕ is
defined as

kerϕ :=
{
g ∈ G | ϕ(g) = 1

}
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Proposition 2.9. Let G,H be groups and let ϕ : G→ H be a homomorphism. Then, kerϕ ≤ G.

Proof. Left as an exercise.

Proposition 2.10. Let G,H be groups and let ϕ : G→ H be a homomorphism. ϕ is injective if and
only if kerϕ = {1}, the trivial subgroup.

Proof. Observe that for all a,b ∈ G

ϕ(a) = ϕ(b) ⇐⇒ ϕ(a) · (ϕ(b))−1 = 1 ⇐⇒ ϕ(ab−1) = 1.

If ϕ is injective, then ϕ(a) = ϕ(b) ⇐⇒ a = b. Hence, ϕ(ab−1) = 1 ⇐⇒ a = b and kerϕ = {1}.
Conversely, suppose kerϕ = {1}. Then, ϕ(ab−1) = 1 ⇐⇒ ab−1 = 1 ⇐⇒ a = b. Thus,
ϕ(a) = ϕ(b) ⇐⇒ a = b and ϕ is injective.

Proposition 2.11. Let G,H be groups and let ϕ : G→ H be a homomorphism. If ϕ is injective then
G ∼= imϕ.

Proof. Note that ϕ : G→ imϕ is surjective by definition. If ϕ is also injective, then ϕ is a bijection.
Moreover, ϕ is also a homomorphism. Thus, ϕ is an isomorphism and G ∼= imϕ.

Theorem 2.12 (Cayley’s Theorem). Every group is isomorphic to a subgroup of a permutation
group.

Proof. We showed that ϕ : G → SG defined as ϕ(a) = Ta is a homomorphism. From Proposi-
tion 2.6, we have that imϕ ≤ SG, a permutation group. Now, we have

a ∈ kerϕ =⇒ ϕ(a) = 1 =⇒ Ta(1) = 1 =⇒ a = 1

Hence, kerϕ = {1}. By Proposition 2.10,ϕ is injective and henceG ∼= imϕ. Hence,G is isomorphic
to a subgroup of a permutation group.

Example 2.13. Suppose G = Z3 and define ϕ : G→ S3 as above. One can show that imϕ contains
the identity permutations and both the 3-cycles and hence forms a subgroup of S3. In fact, imϕ ∼=
A3.

Suppose ϕ : G→ H is a homomorphism. We saw that elements of G that map to the identity in H
form a subgroup of G, its kernel. We now generalise this idea by looking at what elements in G
map to a particular element h ∈ H.
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Definition 2.14. Let G,H be groups and let ϕ : G → H be a homomorphism. The fiber of an
element h ∈ H is defined as

ϕ−1(h) :=
{
g ∈ G | ϕ(g) = h

}
.

Remark 2.15. kerϕ = ϕ−1(1).

Definition 2.16. Let H ≤ G. For g ∈ G, we define the left coset of H by g as

gH := {gh | h ∈ H}.

Similarly, we define the right coset of H by g as

Hg := {hg | h ∈ H}.

Proposition 2.17. Let H ≤ G. Then, the number of left and right cosets of H in G are equal. This
common value is called the index of H in G and is denoted as [G : H].

Proposition 2.18. Let G,H be groups and let ϕ : G→ H be a homomorphism. Suppose g ∈ G and
ϕ(g) = h. Then, the fiber of h is the left coset of kerϕ by g.

Proof. Suppose x ∈ G is such that ϕ(x) = h = ϕ(g). We have

ϕ(x) = ϕ(g) ⇐⇒ ϕ(g−1x) = 1 ⇐⇒ g−1x ∈ kerϕ ⇐⇒ x ∈ gkerϕ.

Proposition 2.19. Let G be a group and let H ≤ G. Then, any left or right coset of H in G has the
same cardinality as H itself.

Corollary 2.20. Let G,H be groups and let ϕ : G→ H be a homomorphism. Given any two h,h′ ∈
H, the cardinality of ϕ−1(h) and ϕ−1(h′) is the same, and is equal to the cardinality of kerϕ.

Proposition 2.21. Let H ≤ G and a,b ∈ G. Then,

1. aH = bH ⇐⇒ b−1a ∈ H,

2. either aH = bH or aH∩ bH = ∅, and

3. in particular, if b ∈ aH, then aH = bH.
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Proposition 2.22. Suppose H ≤ G. Then the following two equivalent statements are true.

1. For a,b ∈ G, the relation a ∼ b ⇐⇒ a ∈ bH is an equivalence relation on G.

2. The left cosets of H, namely gH for g ∈ G, form a partition of G. In other words, G is a
disjoint union of left cosets of H.

Proposition 2.23. Let G,H be groups and let ϕ : G→ H be a homomorphism. Then, G is a disjoint
union of fibers of elements in imϕ. That is,

G =
⊔

h∈ imϕ

ϕ−1(h)

Theorem 2.24 (Counting Principle). Let G be a group and let H ≤ G. Then, |G| = |H| · [G : H].

Proof. The proof is straightforward since G can be written as a disjoint union of distinct left cosets
of H.

Corollary 2.25. Let ϕ : G→ H be a group homomorphism. Then, |G| = |kerϕ| ·|imϕ|.

Another corollary of the counting principle is the following.

Theorem 2.26 (Lagrange’s Theorem). Let G be a group and let H ≤ G. Then, |H| divides |G|.

Corollary 2.27. Let G be a finite group of order p where p is a prime number. Then, the only
subgroups of G are the trivial subgroup and G itself.

We now provide a second proof of Euler’s Theorem using Lagrange’s Theorem.

Theorem 2.28 (Euler’s Theorem). Let a,n ∈N+ and (a,n) = 1. Then, aϕ(n) ≡ 1 (mod n).

Proof. Consider the multiplicative group Z×n of orderϕ(n). Since gcd(a,n) = 1, a ∈ Z×n . Consider
the cyclic group H generated by a. H is a subgroup of Z×n . By Lagrange’s Theorem, |H| divides
ϕ(n). But |H| = |a|. We know that

(a)|a| = 1

Now, since ϕ(n) = |a| ·m for somem ∈ Z, we have

(a)ϕ(n) = 1 =⇒ aϕ(n) ≡ 1 (mod n)
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Note that the converse of Lagrange’s Theorem is not true. That is, if G is a group of order n and d
is a divisor of n, then there need not exist a subgroup H ≤ G of order d. Consider the group A4,
of order 12.

Claim: There exists no subgroup of A4 of order 6.

Proof. Suppose there is a subgroupH ≤ A4 of order 6. By the counting principle,Hwill have 2 left
cosets. Then, A4 = H ∪ σH where σ ∈ A4 and σ /∈ H. A4 consists of the identity permutation, 8
3-cycles and 3 elements which are products of 2 disjoint 2-cycles. If τ is a 3-cycle in A4 then τ3 = 1
and hence τ = τ4 = (τ2)2. Thus, if τ ∈ A4, then τ2 ∈ H, since the square of every permutation
in A4 is a 3-cycle. If τ ∈ H then clearly τ2 ∈ H. Pick an element τ ∈ σH. Then, τ = σh for some
h ∈ H. We then have τ2 = σhσh. Notice that G can also be written as a disjoint union of right
cosets. We then get

G = H∪ σH = H∪Hσ =⇒ σH = Hσ.

Now, hσ = σh′ for some h′ ∈ H. We thus get τ2 = σ2h′h ∈ σH. Thus, σ2h′hσh̃ for some h̃ ∈ H.
However, this gives us σh′h = h̃ =⇒ σ ∈ Hwhich is a contradiction.

Theorem 2.29. Suppose K ≤ H ≤ G and G is finite. Then, [G : K] = [G : H] · [H : K].

Proof. Suppose [G : H] = r. Then,

G =
r⊔
i=1

giH for some g1, . . . ,gr ∈ G.

Suppose [H : K] = s. Then,

H =
s⊔
j=1

hjK for some h1, . . . ,hs ∈ H.

It is left as an exercise to show that cosets of the form gihjK are disjoint and to show that these
cosets exhaust G. Thus,

G =
r⊔
i=1

s⊔
j=1

gihjK =⇒ [G : K] = r · s

Definition 2.30. Let G be a group a ∈ G. The map γa : G→ Gwith γa(g) = aga−1 for all g ∈ G is
an isomorphism and is called conjugation by a or an inner automorphism of G.

Definition 2.31. Let G be a group. Then, the set

AutG :=
{
ϕ : G→ G | ϕ is an automorphism

}
forms a group under composition of maps and is called the automorphism group of G.
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Proposition 2.32. Suppose G is the6 cyclic group of order n, that is, G = Zn. Suppose ϕ : G → G

is an automorphism. Then, the following are true.

1. ϕ(1) = mwhere gcd(m,n) = 1 and 1 ≤ m ≤ n− 1.

2. The map ψ : AutG→ Z×n defined by ψ(ϕ) = ϕ(1) is an isomorphism.

Definition 2.33. Suppose G is a group and N ≤ G. For g ∈ G, we define gNg−1 := {gng−1 | n ∈
N}. N is said to be a normal subgroup of G if gNg−1 = N for all g ∈ G. We denote this as N E G.

Proposition 2.34. Let G,H be groups and let ϕ : G→ H be a homomorphism. Then, kerϕ E G.

Proposition 2.35. Suppose H ≤ G and [G : H] = 2. Then, H E G.

Proof. Since [G : H] = 2, G is the disjoint union of two distinct left (or right) cosets of H. That is,
for some g ∈ G \H, we have G = H ∪ gH and G = H ∪Hg. Let gh ∈ gH. Since gh ∈ G, we must
have either gh ∈ H or gh ∈ Hg. Note that gh ∈ H =⇒ g ∈ H. Since we assumed g /∈ H, we get
that gh ∈ Hg =⇒ gH ⊆ Hg. A similar argument also shows that Hg ⊆ gH, giving us gH = Hg.
We leave it as an exercise to show that gH = Hg =⇒ H E G.

Corollary 2.36. For all n ∈N+, n ≥ 3, An E Sn.

Definition 2.37 (Center). Let G be a group. The center of G is defined as

Z(G) := {z ∈ G | zg = gz ∀g ∈ G}

Proposition 2.38. Let G be a group and let Z(G) denote its center. Then, Z(G) E G.

Proof. Let x ∈ G. Then, xZ(G)x−1 = {xyx−1 | y ∈ Z(G)}. Since y ∈ Z(G), xyx−1 = yxx−1 = y.
Thus, xZ(G)x−1 = Z(G) for any x ∈ G.

Proposition 2.39. Let H ≤ G. Then, the following statements are equivalent.

1. H E G.

6It turns out that up to isomorphism, there is only one cyclic group of order n and only one infinite cyclic group.
This is listed as an exercise.
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2. gH = Hg.

3. Each left coset of H is some right coset of H.

Proof. We only prove that (2) ⇐= (3) as the rest of the implications are easy to verify. Suppose
gH is some left coset of H and gH = Ha for some a ∈ G. Now, g ∈ gH =⇒ g ∈ Ha. However,
we know that g ∈ Hg. Since any two right cosets of H are either equal or disjoint, we conclude
that Ha = Hg and hence, gH = Hg.

Corollary 2.40. If H is the only subgroup of order d in a group G, then H E G.

Proof. Fix a g ∈ G. We know that γg : G → G is an isomorphism. Hence,
∣∣∣gHg−1∣∣∣ = |H| = d. But

since H is the only subgroup of order d, we conclude that gHg−1 = H for all g ∈ G.

Theorem 2.41 (Correspondence Theorem). Letϕ : G→ G′ be a homomorphism. Then, the follow-
ing are true.

1. ϕ−1(H′) ≤ G for all subgroups H′ ≤ G′. Here, ϕ−1(H′) := {g ∈ G | ϕ(g) ∈ H′}.

2. If H′ E G′ then ϕ−1(H′) E G.

3. If ϕ is surjective and ϕ−1(H′) E G, then H′ E G′.

4. If ϕ is surjective, then there is a one-to-one correspondence between the following sets.

{H ≤ G | kerϕ ≤ H}←→ {H′ ≤ G′}

Under this correspondence, H′ E G′ ⇐⇒ ϕ−1(H′) E G′.

Proof. Let H be a subgroup of G containing the kernel and let H′ be a subgroup of G′. To show
a bijection, we need to show that ϕ−1(ϕ(H)) = H and ϕ(ϕ−1(H′)) = H′. The second statement
is trivial, hence we only look at the first statement. It is easy to show that H ⊆ ϕ−1(ϕ(H)). Let
x ∈ ϕ−1(ϕ(H)) =⇒ ϕ(x) ∈ ϕ(H). Thus, ϕ(x) = ϕ(h) for some h ∈ H. Thus, ϕ(xh−1) = 1 =⇒
xh−1 ∈ kerϕ ⊆ H. Thus, x ∈ H =⇒ ϕ−1(ϕ(H)) ⊆ H, completing the proof.

Let g ∈ G. We need to show that gϕ−1(H′)g−1 ⊆ H′. Let x ∈ ϕ−1(H′). Then, ϕ(x) ∈ H′. Now,

ϕ(gxg−1) = ϕ(g)ϕ(x)ϕ(g−1) ∈ H′

Thus, gxg−1 ∈ ϕ−1(H′) for all x ∈ ϕ−1(H′). Thus, ϕ−1(H′) E G.

We now show that if ϕ is surjective and H E G containing kerϕ then ϕ(H) E G′. We look at the
conjugate g′ϕ(x)(g′)−1 where x ∈ H and g′ ∈ G′. Since ϕ is surjective, g′ = ϕ(g) for some g ∈ G.
Now,

g′ϕ(x)(g′)−1 = ϕ(g)ϕ(x)(ϕ(g))−1 = ϕ(gxg−1) ∈ ϕ(H)
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Proposition 2.42. Let ϕ : G → G′ be a surjective homomorphism and let H′ ≤ G′ and ϕ−1(H′) be
its inverse image. Let δ : ϕ−1(H′)→ H′ be the map ϕ restricted to ϕ−1(H′). Then,

1. δ is a surjective homomorphism.

2. kerϕ = ker δ.

3.
∣∣∣ϕ−1(H′)

∣∣∣ = |kerϕ| ·
∣∣H′∣∣.

We know the subgroups of S3 - the trivial subgroup, 3 subgroups of order 3, the alternating group
A3, and S3 itself. We now use this knowledge to understand a certain class of subgroups of S4. Let
A = {T1, T2, T3} where

T1 = {(1 2), (3 4)}
T2 = {(1 3), (2 4)}
T3 = {(1 4), (2 3)}

Let σ = (1 2 3 4). Then, σ gives rise to a permutation ϕσ of A. We have

ϕ(σ)(T1) = T3 ϕ(σ)(T2) = T2 ϕ(σ)(T3) = T1

Similarly, any permutation in S4 is mapped to a permutation in S3. We leave it as an exercise to
show that ϕ : S4 → S3 as defined above forms a surjective homomorphism. One may also verify
that

V := {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊆ kerϕ

V forms a subgroup of S4, called the Klein-four group which corresponds to reflections of a square.
Note also that|S4| = |kerϕ| ·|S3| =⇒ |kerϕ| = 4. Thus, the Klein-four group is in fact the kernel of
this homomorphism. Using the correspondence theorem, we can deduce a lot about the subgroups
of S4 containing the Klein-four group. There are exactly 6 such subgroups, each having order equal
to a multiple of 4 that divides 24. This gives us 4, 8, 12 and 24 as the possible orders. The subgroup
of order 4 is the Klein-four itself while the subgroup of order 24 is S4 itself. One can further show
that all subgroups of order 8 that contain the Klein-four group arise from subgroups of order 2 in
S3, which are exactly three in number. We hence conclude that there are exactly 3 subgroups of
order 8 in S4 which contain the Klein-four group. Moreover, the three subgroups of order 2 in S3
are not normal, hence the subgroups of order 8 in S4 containing the Klein-four group are also not
normal. Finally, there exists a unique subgroup of order 12 in S4 containing the Klein-four group,
which turns out to be the alternating group A4. Note that characterising these subgroups of S4
was a herculean task to carry out by only looking at S4. However, the correspondence theorem
allows us to map these subgroups to simpler subgroups of a group which we understand.
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§3. Direct Products and Quotient Groups

Definition 3.1 (Direct Product). Suppose G1, . . . ,Gn are groups. We define the direct product of
these groups as

G1 × . . .×Gn =
{
(g1, . . . ,gn) | gi ∈ Gi for all i ∈ {1, . . . ,n}

}
with the associated binary operation as

(g1, . . . ,gn)(h1, . . . ,hn) = (g1h1, . . . ,gnhn)

where each gi,hi ∈ Gi for all i ∈ {1, . . . ,n}. The direct product, along with this binary operation,
forms a group.

Example 3.2. Let C2 be the7 cyclic group of order 2 and let C3 be the cyclic group of order 3.
Suppose C2 = 〈x〉 and C3 = 〈y〉. Then,

C2 ×C3 =
{
(1, 1), (1,y), (1,y2), (x, 1), (x,y), (x,y2)

}
Notice that |(x,y)| = 6. Since |C2 ×C3| = 6, we see that (x,y) in fact generates C2 × C3. That
is, C2 × C3 = 〈(x,y)〉, a cyclic group of order 6. Since there is only one cyclic group of order 6,
we conclude that C2 × C3 ∼= C6. We leave it as an exercise to explicitly define the isomorphism
between these two groups. This is generalised by the following proposition.

Proposition 3.3. Suppose Cm and Cn are cyclic groups of orderm and n respectively. Then,

1. |Cm ×Cn| = mn.

2. Cm ×Cn is cyclic if and only if gcd(m,n) = 1.

3. if gcd(m,n) = 1, then Cm ×Cn ∼= Cmn.

4. if x ∈ Cm and y ∈ Cn, then
∣∣〈x,y〉

∣∣ = lcm(|x| ,|y|).

Definition 3.4 (Inclusion Maps). Let A and B be two groups and let A × B denote their direct
product. Define iA : A→ A× B and iB : B→ A× B as

iA(a) = (a, 1) for all a ∈ A

iB(b) = (1,b) for all b ∈ B

We call iA the inclusion map of A in A× B and iB the inclusion map of B in A× B.

7Since, up to isomorphism, there is only a single cyclic group of order n, we denote this group as Cn.
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Proposition 3.5. Let A,B be two groups and let iA, iB be their respective inclusion maps in A× B.
Then,

1. iA and iB are group homomorphisms.

2. im iA ≤ A× B and im iB ≤ A× B.

3. iA and iB are injective.

4. im iA ∼= A and im iB ∼= B.

Definition 3.6. Let A and B be two groups and let A × B denote their direct product. Define
PA : A× B→ A and PB : A× B→ B as

PA(a,b) = a

PB(a,b) = b

We call PA the projection map of A× B onto A and PB the projection map of A× B onto B.

Proposition 3.7. Let A,B be two groups and let PA,PB be their respective projection maps. Then,

1. PA and PB are group homomorphisms.

2. kerPA = im iB and kerPB = im iA.

Corollary 3.8. Let A,B be two groups and let iA, iB be their respective inclusion maps in A× B.
Then, im iA E A× B and im iB E A× B.

Proof. We leave the proof as an exercise to the reader. We will later show that The proof follows
quite trivially since im iA and im iB are both the kernels of some group homomorphisms (namely,
the projection maps described above).

Proposition 3.9. Let A,B be two groups and let iA, iB be their respective inclusion maps in A× B.
Then,

1. im iA ∩ im iB = {(1, 1)}.

2. im iA im iB = A× Bwhere

im iA im iB :=
{
(a, 1)(1,b) | (a, 1) ∈ im iA, (1,b) ∈ im iB

}
3. for any (a,b) ∈ A× B, the decomposition of (a,b) into a product of two elements in im iA

and im iB is unique.
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Definition 3.10 (Internal Direct Product). Let G be a group and N1, . . . ,Nt be normal subgroups
of G. We say that G is an internal direct product of N1, . . . ,Nt if

1. G = N1 · · ·Nt.

2. Every g ∈ G has a unique decomposition g = n1 · · ·nt where ni ∈ Ni for all i ∈ {1, . . . , t}.

Hence, we just showed that A× B is an internal direct product of im iA and im iB. Note that the
definition does not require that these normal subgroups intersect trivially. In fact, this follows
from the definition itself.

Proposition 3.11. Let G be a group and N1, . . . ,Nt be normal subgroups of G. If G is an internal
direct product of N1, . . . ,Nt, then Ni ∩Nj = {1} for all i, j ∈ {1, . . . , t} with i 6= j.

Proof. We will consider the case that G is an internal direct product of 2 normal subgroups, N1
and N2. The idea used next generalises very well to any internal direct product. Suppose that N1
and N2 both contain g 6= 1. Then, they also contain g−1. Now consider the identity 1 ∈ G. We can
write

1 = 1 · 1 = g · g−1

Thus, giving us two distinct ways of writing the same element in G as a product of elements in
N1,N2. Hence, N1 and N2 must intersect trivially.

Lemma 3.12. Let G be an internal direct product of normal subgroups N1, . . . ,Nt. Then, for all
a ∈ Ni,b ∈ Nj with i, j ∈ {1, . . . , t} and i 6= j, we have ab = ba. That is, elements in distinct Ni’s
commute.

Proof. Let a ∈ Ni and b ∈ Nj and i 6= j. Define h = aba−1b−1. We can write h as (aba−1)b−1.
The bracketed term is a conjugate of b. Since b ∈ Nj and Nj is normal, we have aba−1 ∈ Nj.
Since b−1 ∈ Nj, we have h ∈ Nj. Similarly, we can write h = a(ba−1b) and conclude that h ∈ Ni.
However, since i 6= j, we have Ni ∩Nj = {1}. Thus, h = 1. This gives us aba−1b−1 = 1 =⇒ ab =
ba.

Theorem 3.13. Let G be a group and N1, . . . ,Nt be normal subgroups of G. If G is an internal
direct product of N1, . . . ,Nt, then the map ϕ : N1 × . . .×Nt → G defined by

ϕ(n1, . . . ,nt) = n1 · · ·nt

is an isomorphism, and hence G ∼= N1 × . . .×Nt.

Proof. We first prove that ϕ is a homomorphism. Let (n1, . . . ,nt), (m1, . . . ,mt) ∈ N1 × . . .×Nt be
two n-tuples. Then,

ϕ
(
(n1, . . . ,nt)(m1, . . . ,mt)

)
= ϕ (n1m1, . . . ,ntmt) = n1m1 · · ·ntmt
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We also have
ϕ(n1, . . . ,nt)ϕ(m1, . . . ,mt) = n1 · · ·ntm1 · · ·mt

Now, since ni,mi all belong to distinctNi, the above lemma allows us to conclude commutativity
of these elements. Thus,

ϕ
(
(n1, . . . ,nt)(m1, . . . ,mt)

)
= ϕ(n1, . . . ,nt)ϕ(m1, . . . ,mt)

and hence ϕ is a homomorphism. It is trivial to check that ϕ is surjective. Also observe that
kerϕ = {(1, . . . , 1)} since 1 ∈ G has the unique representation 1 · · · 1. Thus, ϕ is also injective and
hence a bijection. This proves isomorphism.

Proposition 3.14. Let G be a group and let H,K be finite subgroups of G. Define

HK :=
{
hk | h ∈ H,k ∈ K

}
=
⋃
h∈H

hK

Then, the following hold true.

1. |HK| = |H||K||H∩ K| .

2. HK ≤ G ⇐⇒ HK = KH.

3. If K E G then HK ≤ G.

Proof. We see that HK is a union of left cosets of K taken over elements in H. Hence, to count
the number of elements in HK, we only need to count the number of distinct left cosets of K by
elements in H. To this end, observe that

h1K = h2K ⇐⇒ h−12 h1 ∈ K

Since h−12 h1 must also lie in H, we have

h1K = h2K ⇐⇒ h−12 h1 ∈ K∩H ⇐⇒ h1(K∩H) = h2(K∩H)

Hence, the number of distinct left cosets of K by elements in H is equal to the number of distinct
left cosets of K ∩H in H. However, this is precisely equal to [H : K ∩H]. If H,K are finite, this is
equal to |H|

|K∩H| . Each distinct left coset has precisely |K| elements. Thus,

|HK| = |K| · [H : K∩H] = |H||K||H∩ K|

Now, suppose that HK is a subgroup and let h ∈ H and k ∈ K. We then have h = h1 ∈ HK and
k = 1k ∈ HK. Since HK is closed under products, we have kh ∈ HK and thus KH ⊆ HK. We also
have (hk)−1 ∈ HK, so (hk)−1 = xy for some x ∈ H, y ∈ K. Thus, hk = (xy)−1 = y−1x−1 ∈ KH
since y−1 ∈ K and x−1 ∈ H. Thus, HK ⊆ KH. Hence, if HK ≤ G then HK = KH.

Conversely, suppose that HK = KH. We trivially see that 1 ∈ HK. Suppose a,b ∈ HK. Thus,
a = h1k1 and b = h2k2 for some h1,h2 ∈ H and k1,k2 ∈ K. Now, k1h2 ∈ KH = HK and thus
k1h2 = hk for some h ∈ H and k ∈ K. We then have

ab = h1k1h2k2 = h1hkk2
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Since H and K are closed under products, h1h ∈ H and kk2 ∈ K, giving us ab ∈ HK. Also,

a−1 = (h1k1)
−1 = k−11 h

−1
1 ∈ KH = HK

Thus, HK is closed under products and inverses and also contains the identity. Thus, HK ≤ G.

Now, suppose K E G. It suffices to show that HK = KH. Let x ∈ HK. Thus, x = hk for some
h ∈ H, k ∈ K. We have

xh−1 = hkh−1 ∈ K (since K is normal)

Thus, x ∈ HK =⇒ x ∈ KH and hence HK ⊆ KH. One can similarly show that KH ⊆ HK. Thus
HK = KH and HK ≤ G.

Proposition 3.15. Let G be a group and let N E G. Define G/N :=
{
gN | g ∈ G

}
, the set of all left

cosets of N. Then, G/N forms a group with binary operation defined as

(gN)(hN) = (gh)N for all gN,hN ∈ G/N

Proof. We first prove that this binary operation is well-defined. That is, if gN = g1N and hN =
h1N, then (gh)N = (g1h1)N. gN = g1N =⇒ g−11 g ∈ N and hN = h1N =⇒ h−11 h ∈ N. Now,

(gh)N = (g1h1)N ⇐⇒ (g1h1)
−1gh ∈ N ⇐⇒ h−11 g

−1
1 gh ∈ N

Now, g−1g = n1 and h−11 h = n2 for some n1,n2 ∈ N, giving us g = g1n1 and h = h1n2. Thus,

(gh)N = (g1h1)N ⇐⇒ h−11 g
−1
1 g1n1h1n2 ∈ N ⇐⇒ h−11 n1h1n2 ∈ N

Now h−11 n1h1 ∈ N since N is normal. Thus, h−11 n1h1n2 ∈ N =⇒ (gh)N = (g1h1)N.

Now, we prove associativity. Let g1N,g2N,g3N ∈ G/N. We have

(g1Ng2N)g3N = (g1g2N)g3N =
(
(g1g2)g3

)
N

Since G is associative, (g1g2)g3 = g1(g2g3). Thus,

(g1Ng2N)g3N =
(
g1(g2g3)

)
N = g1N(g2g3N) = g1N (g2Ng3N)

Since (gN)N = N(gN) = gN, N is the element. It is also trivial to check that (gN)−1 = g−1N.
Hence, G/N forms a group.

Remark 3.16. The group G/N, as defined above, is called the quotient group of N in G.

Proposition 3.17. Let G be a group and let N E G. Define ϕ : G → G/N with ϕ(g) = gN for all
g ∈ G. Then, ϕ is a surjective group homomorphism.
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Proof. Surjectivity is evident. We hence only show that ϕ is a homomorphism. Given any g1,g2 ∈
G, we have

ϕ(g1g2) = g1g2N = (g1N)(g2N) = ϕ(g1)ϕ(g2)

Proposition 3.18. Every normal subgroup of a group G is the kernel of some group homomor-
phism.

Proof. Let G be a group and let N E G be a normal subgroup. We define ϕ : G → G/N with
ϕ(g) = gN for all g ∈ G. The identity element of G/N is N. Hence,

kerϕ =
{
g ∈ G | ϕ(g) = N

}
=
{
g ∈ G | gN = N

}
= N

Proposition 3.19. Let G be a group and let N E G. Then, every subgroup of the quotient group
G/N is of the form H/N =

{
hN | h ∈ H

}
where N ≤ H ≤ G. Conversely, if N ≤ H ≤ G, then

H/N ≤ G/N. Moreover, if N ≤ N′ E G, then N′/N E G/N.

Proof. This is a direct application of the Correspondence Theorem.

There is a reason why we are interested in only quotient groups generated by normal subgroups.
Such a nice structure will not exist if the subgroup isn’t normal. In fact, the binary operation
defined above is indeed a well-defined binary operation then the subgroup must be normal, as we
now show.

Proposition 3.20. Let G be a group and letN ≤ G. The operation · : G/N×G/N→ G/N defined
by

(gN) · (hN) = (gh)N for all gN,hN ∈ G/N

is well-defined if and only if N E G.

Proof. We have already shown that if N E G then the binary operation on G/N is well defined.
Now suppose the operation is well-defined. That is, if gN = g1N and hN = h1N then (gh)N =
(g1h1)N. Let n ∈ N and let g ∈ G. We have nN = 1N. Thus, (ng)N = (1g)N = gN, which gives
us gN = ngN. Thus, N = g−1ngN and hence g−1ng ∈ N for all g ∈ G, giving us N E G.
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§4. Semidirect Products

We now study the “semidirect product” of two groups H and K, which is a generalisation of the
direct product which relaxes the requirement that both H and K be normal. Suppose G is a group
and H,K are subgroups of G such that

1. H E G (but K is not necessarily normal in G), and

2. H∩ K = 1.

By Proposition 3.14, HK ≤ G. Moreover, every element in HK can be written uniquely as hk for
some h ∈ H , k ∈ K. That is, there is a bijection between HK and H× K, given by hk 7→ (h,k).
Here, the group H appears as elements of the form (h, 1), while the group K appears as elements
of the form (1,k). Given h1k1,h2k2 ∈ HK, we have

(h1k1)(h2k2) = h1k1h2(k
−1
1 k1)k2)

= h1(k1h2k
−1
1 )k1k2

= h3k3

where h3 = h1(k1h2k
−1
1 ) ∈ H since H is normal, and k3 ∈ K. Since H is normal in G, K acts on H

via conjugation, with action defined as (k,h) 7→ khk−1. With this, the product of two elements of
HK can be written as

(h1k1)(h2k2) = (h1 k1 · h2)(k1k2)

The action of K on H gives rise to a homomorphism of K into Aut(H). We now use this interpreta-
tion to define a group given two groups H and K, and a homomorphism from K to Aut(H).

Theorem 4.1. Let H and K be groups and let ϕ : K → Aut(H) be a homomorphism. Let · be the
(left) action of K on H determined by ϕ. Let G be the set of ordered pairs (h,k) with h ∈ H, k ∈ K,
and define operation on G as

(h1,k1)(h2,k2) = (h1 k1 · h2,k1k2).

1. G is a group under this operation with |G| = |H| ·|K|.

2. The sets {(h, 1) | h ∈ H} and {(1,k) | k ∈ K} are subgroups of G and the maps h 7→ (h, 1) for
h ∈ H, and k 7→ (1,k) for k ∈ K, are isomorphisms of these subgroups with the groups H
and K respectively. That is,

H ∼=
{
(h, 1) | h ∈ H

}
and K ∼=

{
(1,k) | k ∈ K

}
.

Identifying H and Gwith their isomorphic copies as above, the following are true.

3. H E G.

4. H∩ K = 1.

5. For all h ∈ H,k ∈ K, khk−1 = k · h = ϕ(k)(h).

Proof. Since we have discussed the motivation for the above, the proof becomes easy.
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1. We leave it as a simple exercise to prove that G is a group, with identity (1, 1) and (h,k)−1 =
(k−1 · h−1,k−1). Moreover, we clearly have |G| = |H| ·|K|.

2. Let H̃ := {(h, 1) | h ∈ H} and K̃ := {(1,k) | k ∈ K}. For all a,b ∈ H and all x,y ∈ K, we clearly
have

(a, 1)(b, 1) = (ab, 1) and (1, x)(1,y) = (1, xy)

which shows that H̃ and K̃ are subgroups of G, and that the maps as defined are isomor-
phisms.

4 It is clear by definition that H̃∩ K̃ = 1.

5 We have

(1,k)(h, 1)(1,k)−1 = (k · h,k)(1,k−1)

= (k · hk · 1,kk−1)
= (k · h, 1)

Identifying (h, 1) with h and (1,k) with k, we get khk−1 = k · h.

3 We have shown above that K ≤ NG(H). Since H ≤ NG(H) and G = HK, it follows that
G = NG(H). Hence, H E G.

Definition 4.2. Let H and K be groups and let ϕ : K→ Aut(H) be a homomorphism. The group G
described in Theorem 4.1 is called the semidirect product ofH and Kwith respect to ϕ. We denote
this group as Hoϕ K. When there is no danger of confusion, we simply write HoK.

Proposition 4.3. Let H and K be groups and let ϕ : K → Aut(H) be a homomorphism. Then, the
following are equivalent.

1. The identity map between HoK and H× K is an isomorphism.

2. ϕ is the trivial homomorphism.

3. K E HoK.

Proof.

1 =⇒ 2. By the definition of the group operation on HoK, we have

(h1,k1)(h2,k2) = (h1 k1 · h2,k1k2)

for all h1,h2 ∈ H and k1,k2 ∈ K. If the identity map is an isomorphism, then (h1,k1)(h2,k2) =
(h1h2,k1k2). Thus, we get k1 · h2 = h2 for all h2 ∈ H,k1 ∈ K, so that ϕ is the trivial homo-
morphism.

2 =⇒ 3. Ifϕ is trivial, then the action of K onH is trivial. Thus, the elements ofH commute with K by
Theorem 4.1, and H normalises K. Since K normalises itself, we get that G = HK normalises
K, so that K E HoK.
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3 =⇒ 1. If K E HoK, then both H and K are normal subgroups of HoK. Now, for any h ∈ H, k ∈ K,
we have

h−1k−1hk = h−1(k−1hk) ∈ H since H is normal, and

h−1k−1hk = (h−1k−1h)k ∈ K since K is normal.

Since H ∩ K = 1, it follows that hk = kh for all h ∈ H,k ∈ K. Thus, the action of K on H is
trivial and we get (h1,k1)(h2,k2) = (h1h2,k1k2), which completes the proof.

Example 4.4.

1. The dihedral group D2n can be expressed as the semidirect product of two cyclic groups. In
fact, we have D2n ∼= Zn o Z2. Recall that any element in D2n can be written as risj where
i is unique modulo n, and j is unique modulo 2. We leave it to the reader to verify that
(i, j) 7→ risj is an isomorphism.

2. With the above, we may generalise the dihedral group to infinite order, by considering the
semidirect product Z ∼= Z2. We denote this infinite-order group as D∞.

Theorem 4.5. Let G be a group and let H,K be subgroups such that

1. H E G, and

2. H∩ K.

Let ϕ : K → Aut(H) be the homomorphism defined by mapping k ∈ K to the automorphism
induced by conjugation by k on H. Then, HK ∼= H o K. In particular, if G = HK with H,K
satisfying the above two, then G is the semidirect product of H and K.
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§5. Isomorphism Theorems

Theorem 5.1 (First Isomorphism Theorem). If ϕ : G → H is a group homomorphism, then
G/ kerϕ ∼= imϕ.

Proof. Let N be kerϕ and let G′ = imϕ. We have shown that N E G. Let π : G → G/N be the
map defined as π(g) = gN for all g ∈ G. Now, we define ψ : G/N → G′ as ψ(gN) = ϕ(g) for all
gN ∈ G/N. We first show that this map is well-defined. For g,h ∈ G, we have

gN = hN ⇐⇒ h−1g ∈ N ⇐⇒ ϕ(h−1g) = 1 ⇐⇒ (ϕ(h))−1ϕ(g) = 1 ⇐⇒ ϕ(g) = ϕ(h)

This not only proves that the map is well-defined but also that it is injective. Moreover, surjectivity
of ψ is easy to verify. Hence, ψ is an isomorphism between G/N and G′. Recall that we had
defined N = kerϕ and G′ = imϕ. Thus, G/ kerϕ ∼= imϕ.

Pictorially, we can visualise the first isomorphism theorem as follows.

G imϕ

G/ kerϕ

ϕ

ψ
π

For example, consider ϕ : Sn → {1,−1} defined by ϕ(σ) = signσ for all σ ∈ Sn. The kernel of this
map is the group of all even permutations, or the alternating group. Thus, kerϕ = An. By the
first isomorphism theorem, Sn/An ∼= {1,−1} Note that {1,−1} is just the cyclic group of order 2,
denoted as C2. Hence, Sn/An ∼= C2.

Let V be the Klein-four group in S4, that is, V =
{
1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

}
. We have seen

that V E S4. After a laborious argument earlier, we were able to show that S4/V was in fact S3.
But this is achieved rather simply using the first isomorphism theorem. We leave it as an exercise
to show that S4/V ∼= S3.

Let S1 ≤ C× be the subgroup of complex numbers with magnitude unity. We define a map
f : R → S1 defined as f(x) = e2πix. We leave it as an exercise to show that f is a homomorphism.
Notice that ker f = Z. This shows us that Z E R. Moreover, R/Z ∼= S1.

Theorem 5.2 (Second Isomorphism Theorem). Let G be a group. Let N E G and H ≤ G. Then,
N E HN, H∩N E H and HN/N ∼= H/H∩N.

Proof. SinceN forms a normal subgroup of G, it is also clear that it forms a normal subgroup HN.
Let π : G → G/N be the ‘natural’ homomorphism, that is, π(g) = gN for all g ∈ G. Using π, we
define πH : H→ G/N which is the restriction of π to H. It is easy to verify that this restriction is a
homomorphism too. We will now show that imπH is precisely HN/N. We have

HN/N =
{
hnN | h ∈ H,n ∈ N

}
=
{
(hN)(nN) | h ∈ H,n ∈ N

}
=
{
hN | h ∈ H

}
= imπH
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Also, h ∈ kerπH ⇐⇒ hN = N ⇐⇒ h ∈ N. But, we already know that h ∈ H. Hence,
kerπH is given precisely by H ∩N. This shows us that H ∩N E H since it is the kernel of some
group homomorphism. By the First Isomorphism Theorem, we have H/ kerπH ∼= imπH and thus
HN/N ∼= H/H∩N.

The second isomorphism theorem is sometimes also called the Diamond Isomorphism Theorem, the
reason for which should be clear from the following diagram.

G

HN

NH

H∩N

E

E

Theorem 5.3 (Third Isomorphism Theorem). Let G be a group and let H,N be normal subgroups
of G such that N ≤ H. Then, (H/N) E (G/N) and G/H ∼= G/N

H/N .

G

H

G/N

H/N

G/N
H/N

E E

ϕ

ϕH

π

Proof. We will use the above diagrammatic representation to prove this theorem. ϕ : G → G/N
represents the natural homomorphism ϕ(g) = gN. ϕH is the restriction of ϕ to H. Let X ∈ H/N
and Y ∈ G/N. We have X = hN for some h ∈ H and Y = gN for some g ∈ G. Now,

YXY−1 = (gN)(hN)(g−1N) = (ghg−1)N

Since H E G, we have that ghg−1 = h′ for some h′ ∈ H. Thus, YXY−1 = h′N ∈ H/N and
hence, H/N E G/N. Consider the map π ◦ ϕ : G → G/N

H/N . Since π and ϕ are surjective ho-
momorphisms, π ◦ ϕ is also a surjective homomorphism. We know that kerπ = H/N. Thus,
ker(π ◦ϕ) =

{
g ∈ G | ϕ(g) = H/N

}
. Thus, ker(π ◦ϕ) = H. By the First Isomorphism Theorem,

we conclude that
G/H ∼=

G/N
H/N

Theorem 5.4. Let G be a finite abelian group of order n and let d ∈ N+ be such that d | n. Then,
G has a subgroup of order d.
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Proof. We will apply induction on the order of G. If n = 1, the theorem is true. Suppose the
theorem is true for all abelian groups of order strictly less than n. We first prove that for any
prime pwith p | n, G has an element of order p.

We may assume |G| > 1. Suppose a ∈ G such that |a| = m ≥ 2. Suppose p | m. Then, am/p has
order p. Suppose p - m. Consider N = 〈a〉 with |N| = m. Since G is abelian, every subgroup of G
is normal. Hence, N E G. Now, consider the quotient group G/N. We know that |G/N| = n/m.
Since p | n and p - m, we conclude that p divides |G/N|. By the induction hypothesis, there
exists an element of order p in G/N, since G/N is abelian and of order strictly less than n. Thus,
|bN| = p for some b ∈ G. Suppose |b| = k. This gives us bk = 1 =⇒ (bN)k = N. Thus, p | k and
we are back to the first case. Hence, there is an element of order p and hence a subgroup of order
p.

Fix a prime p such that p | d. Let a ∈ G be an element of order p in G and let N = 〈a〉. Thus,
|N| = p. We have |G/N| = n/p < n. Now, by the induction hypothesis, there exists a subgroup
H/N of G/N with |H/N| = d/p. Thus, |H| /|N| = d/p, which gives us |H| = d and we are
done.
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§6. Group Actions

§§6.1. Definitions

Definition 6.1 (Group Action). Let G be a group and let S be a set. A group action of G on S is a
map from G× S to S (denoted as g · s for all g ∈ G, s ∈ S) satisfying

1. g · (h · s) = (gh) · s for all g,h ∈ G, s ∈ S.

2. 1 · s = s for all s ∈ S.

In this case, we say that G acts on S or that S is a G-set.

Definition 6.2 (Permutation Representation). Let G be a group and let S be a set. A homomor-
phism ϕ : G→ SS is called a permutation representation of G on S.

Theorem 6.3. Let G be a group and let S be a set. Define σg : S→ Swith σg(s) = g · s for all s ∈ S.
Then, the following is true.

1. σg is a bijection, and hence a permutation of S.

2. The map ϕ : G→ SS defined by ϕ(g) = σg is a permutation representation of G on S.

Proof. To prove the first part, we show that σg−1 is the inverse of σg. Indeed, we have

σg−1 ◦ σg(s) = g−1 · (g · s) = (g−1g) · s = 1 · s = s for all s ∈ S

Similarly, σg is the inverse of σg−1 . This shows that σg is a bijection, and hence a permutation of S.

We already know that 1 · s = s for all s ∈ S. To prove that ϕ as defined above is a homomorphism,
we see that

σg ◦ σh(s) = g · (h · s) = (gh) · s = σgh(s) for all g,h ∈ G, s ∈ S

Hence, ϕ(g)ϕ(h) = ϕ(gh) for all g,h ∈ G.

It turns out that the converse of the above theorem is also true.

Proposition 6.4. LetG be a group and let S be a set. Letψ : G→ SS be a permutation representation
of G on S. Then, the map from G× S to S, defined by

g · s = ψ(g)(s) for all g ∈ G, s ∈ S

is a group action of G on S.

Proof. Clearly, ψ(1) is the identity permutation and hence 1 · s = s for all s ∈ S. We have

g · (h · s) = ψ(g)
(
ψ(h)(s)

)
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Since ψ is a group homomorphism, we get

g · (h · s) = ψ(gh)(s) = (gh) · s

Exercise 6.5.

1. Consider S = G. The map ψ : G× G → G defined by (g,h) 7→ gh, is a group action. The
permutation representation induced by this group action is the map fromG to SG defined by
g 7→ Tg, where Tg is the translation map, defined by Tg(h) = gh. Moreover, the kernel of this
permutation representation is trivial, and hence is an injective group homomorphism from
G to SG. Hence, G is isomorphic to a subgroup of SG, which is precisely Cayley’s Theorem
(Theorem 2.12).

2. Again, consider S = G. The map ψ : G×G → G defined by (g,h) 7→ ghg−1 is also a group
action. The permutation induced by this group action is the map from G to SG defined by
g 7→ γg, where γg is the conjugation map, defined by γg(h) = ghg−1. The kernel of this
permutation is the set {

g ∈ G | ghg−1 = h for all h ∈ G
}

which is precisely the center of G, Z(G). By the First Isomorphism Theorem (Theorem 5.1),
we get

G/Z(G) ∼=
{
γg | g ∈ G

}
.

The group on the right is the group of inner automorphisms of G.

3. Let F be a field. The group GLn(F) acts on the n-dimensional vector space V := Fn with the
group action naturally defined from GLn(F)× V → V as

(A,u) 7→ Au (the matrix product).

In the case that the field is F2, the vector space V = F2 has precisely 4 vectors, given by

V =


[
0

0

]
,

[
1

0

]
︸︷︷︸
e1

,

[
0

1

]
︸︷︷︸
e2

,

[
1

1

]
︸︷︷︸
e1+e2


Now, consider S = {e1, e2, e1 + e2} and consider G = GL2(F) with the group action defined
as above. This group action gives rise to a permutation representation from G to S3 (since
S has three elements) defined by A 7→ LA, where LA is the linear map induced by A, defined
by LA(u) = Au. The kernel of this permutation representation is trivial and hence, is an
injective group homomorphism. Moreover, since |GL2(F2)| = |S3| = 6, we must have that
this homomorphism is also onto, and hence an isomorphism. Thus, GL2(F2) ∼= S3.

§§6.2. Orbits and Stabilisers

Definition 6.6. Let G be a group and let S be a set. Let · : G× S→ S be a group action. For a fixed
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s ∈ S, we define the orbit of s under this group action as

Os :=
{
g · s | g ∈ G

}
.

Definition 6.7. Let G be a group and let S be a set. Let · : G× S→ S be a group action. For a fixed
s ∈ S, we define the stabiliser of s under this group action as

Gs :=
{
g ∈ G | g · s = s

}
.

Note that Os ⊆ S and Gs ≤ G.

Definition 6.8. Let G be a group and let S be a set. Let · : G× S→ S be a group action. The group
is said to act transitively on S (via the action ·) if Os = S for all s ∈ S. That is, for every pair
s, t ∈ S× S, there exists g ∈ G such that g · s = t.

Proposition 6.9. Let G be a group and let S be a set. Let · : G× S → S be a group action. Define a
relation ∼ on S defined by s ∼ s′ if s′ = g · s for some g ∈ G. Then, ∼ is an equivalence relation. In
other words, s′ ∼ s if s′ ∈ Os.

Proof. Note that s ∼ s since s = 1 · s, hence ∼ is reflexive. If s ∼ s′, then s′ = g · s for some g ∈ G.
We then have

g−1 · s′ = g−1 · g · s = (g−1g) · s = 1 · s = s =⇒ s ∼ s′.

Hence, ∼ is symmetric. If s ∼ s′ and s′ ∼ s′′, we have that s′ = g · s and s′′ = h · s′ for some g,h ∈ G.
Now,

s′′ = h · s′ = h · (g · s) = (hg) · s =⇒ s ∼ s′′ since hg ∈ G.

Hence, ∼ is also transitive, and thus an equivalence relation.

Corollary 6.10. Let G be a group and let S be a set. Let · : G× S → S be a group action. Then, S
can be written as a disjoint union of orbits.

Proof. This follows trivially from Proposition 6.9 and Proposition 0.9.

Theorem 6.11 (Orbit-Stabiliser Formula). Let G be a group and let S be a set. Let · : G× S → S

be a group action. Let G/Gs denote the set8 of cosets of the stabiliser of an element s ∈ S. Then,
ϕ : G/Gs → Os defined by

ϕ(gGs) := g · s
is a bijection. In particular, |Os| = [G : Gs], where [G : Gs] := |G/Gs| is the index of Gs in G. In the
case that G is finite, we have [G : Gs] = |G| /|Gs|.
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Proof. We first show that this map is well-defined by noting that

gGs = hGs ⇐⇒ h−1g ∈ Gs ⇐⇒ (h−1g) · s = s ⇐⇒ g · s = h · s.

Note that this also proves thatϕ is injective. ϕ is also trivially surjective, and hence a bijection.

Proposition 6.12. Let G be a group and let S be a set. Let · : G× S→ S be a group action. Let s ∈ S
and g ∈ G. Then, Gg·s = gGsg−1.

Proof. We have

h ∈ Gg·s ⇐⇒ h · (g · s) = g · s ⇐⇒ (g−1hg) · s = s ⇐⇒ g−1hg ∈ Gs ⇐⇒ h ∈ gGsg−1.

Corollary 6.13. Let G be a group and let S be a set. Let · : G× S→ S be a group action. Then,

|S| =
∑
si

[
G : Gsi

]
where the sum runs over one element si from each orbit of S.

Definition 6.14. Let G be a group and let g ∈ G. We define the centraliser of g as

Z(g) :=
{
h ∈ G | gh = hg

}
.

Moreover, the centraliser Z(g) is a subgroup of G.

Definition 6.15. Let G be a group and let H be a subgroup of G. We define the normaliser of H as

N(H) :=
{
g ∈ G | gH = Hg

}
.

Proposition 6.16. Let G be a group and let H be a subgroup of G. Then, H E N(H) and N(H) is
the largest subgroup of G in which H is a normal subgroup.

Theorem 6.17. Let G be a finite group and let g ∈ G. Let C(g) be the conjugacy class of g, and let
Z(g) be the centraliser of g. Then,

|G| = |C(g)| ·|Z(g)|

8Note that in general Gs need not be a normal subgroup of G. However, we can still talk about its set of cosets.
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Proof. Consider G acting on G via conjugation. That is, consider the group action · : G×G → G,
defined by (h,g) 7→ hgh−1. In this case, Og is clearly the conjugacy class, C(g), of g, and Gg is the
centraliser, Z(g), of g. Applying the Orbit-Stabiliser Formula gives us the required result.

Corollary 6.18. Let G be a finite group. Then,

|G| =
∑
g

|C(g)|

where the sum runs over one element from each conjugacy class of G.

Proof. This follows directly by applying Theorem 6.17 to Corollary 6.13.

Corollary 6.19 (Class Equation). Let G be a group and let Z(G) be its center. Then,

|G| = |Z(G)|+
∑
g

[
G : Z(g)

]
where the sum runs over one element from each conjugacy class that is not in the center.

Proof. The proof trivially follows from Corollary 6.18 once we note that each element of the center
Z(G) forms a conjugacy class containing only itself.

Definition 6.20. Let G be a finite group and let p be a prime. G is called a p-group if |G| = pn for
some n ∈N+.

Theorem 6.21. If G is a p-group, then |Z(G)| ≥ p. In particular, every p-group has a non-trivial
center.

Proof. By the Class Equation of G, we have

pn = |Z(G)|+
∑
g

[
G : Z(g)

]
Note that in the sum to the right, each index is at least 2 (since the sum varies over only non-trivial
conjugacy classes). However,

[
G : Z(g)

]
must divide|G| = pn. It follows that each index is a power

of p, and hence, |Z(G)| is also a power of p. Hence, |Z(G)| ≥ p.

In the case thatG is abelian, Z(G) is the entire groupG. However, the above theorem is truly pow-
erful for non-abelian groups as it states that every non-abelian p-group has a non-trivial proper
normal subgroup, namely, its center.
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Theorem 6.22. Let G be a p-group and let |G| = pn. Then, there is a sequence of subgroups Hi
such that |Hi| = pi for i = 1, . . . ,n. Moreover,

1. 1 E H1 E . . . E Hn, and

2. (H1 ∼=)H1/1,H2/H1, . . . ,Hn/Hn−1 are all cyclic groups of order p.

Here, 1 represents the trivial subgroup of G.

Proof. We apply induction on n. If n = 1, the theorem is trivially true. Suppose the theorem holds
for groups of order pn−1 (n > 1). Let x ∈ Z(G) and x 6= 1 (such an x exists since the center is
non-trivial, by Theorem 6.21). Moreover, |x| = pr where r < n (why?). We also have

∣∣∣xpr−1 ∣∣∣ = p.

Define y := xp
r−1

and let H = 〈y〉. We have H E G. Now, consider the quotient group G/H, of
order pn−1. By the induction hypothesis, G/H has a sequence of subgroups as follows.

1 E H2/H E H3/H E . . . E Hn/H = G/H.

By the Correspondence Theorem, we may conclude the result.

Definition 6.23. A simple group is a non-trivial group that has no non-trivial normal subgroups.

Proposition 6.24. The alternating group A5 is simple.

Proof. We have |A5| = 60. Let the elements

(1), (1 2 3)︸ ︷︷ ︸
σ

, (1 2 3 4 5)︸ ︷︷ ︸
τ

, (1 2)(3 4)︸ ︷︷ ︸
α

be representative elements of the conjugacy classes in A5. Clearly, |C(1)| = 1. By the Orbit-
Stabiliser Formula,

|C(σ)| = 60

|Z(σ)| .

Now, the elements in the centraliser of σ in A5 are the powers9 of σ, of which there are precisely
three - (1),σ, and σ2. Thus, |C(σ)| = 20. Similarly, |C(τ)| = 12. Since the number of 5-cycles in A5
is 24, there is another 5-cycle, say γ, that lies outside of C(τ) and has its own conjugacy class of
12 elements. That is, |C(γ)| = 12. Elementary combinatorics shows that there are 15 permutations
having structure (1 2)(3 4). Moreover, all such elements lie in the same conjugacy class (why?). We
then have |C(α)| = 15, so that the class equation of A5 becomes

60 = 1+ 12+ 12+ 15+ 20.

Now, suppose A5 had a non-trivial normal subgroup, say H. Then, H must be a disjoint union of
conjugacy classes of A5 and must contain the identity (the center). Moreover, |H| must divide 60.
However, from the class equation, we can verify that no possible combination of conjugacy classes
along with the center has order that is a divisor of 60. Hence, A5 is a simple group.
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Remark 6.25. The simplicity of A5 is crucial in proving that there is a quintic polynomial that is
not solvable by radicals.

Lemma 6.26. Let n ≥ 3. Any even permutation in Sn can be written as a product of 3-cycles.

Proof. We leave the proof as an exercise to the reader. The proof should be fairly trivial after noting
the following identities.

(ab)(b c) = (ab c) and (ab)(c d) = (ab c)(b cd).

Theorem 6.27 (Galois). An is simple for all n ≥ 5.

Proof. Let n ≥ 5. Suppose that there is a non-trivial normal subgroup of An, that is, there is
a normal subgroup N E An such that N 6= (1) and N 6= An. Recall that a fixed point of a
permutation is a point that is not ‘moved’ by the permutation. Among all the permutations in
An \ (1), pick a permutation σ that has the maximum number of fixed points. We will show that σ
must be a 3-cycle. First, we write σ as a product of disjoint cycles.

σ = (a1 . . . ak)(b1 . . . bm) · · ·

Suppose k < m. Then, observe that σk is a nontrivial permutation in An that has strictly more
fixed points than σ, which is a contradiction. Similarly, k cannot be strictly greater than m, and
hence, by trichotomy, we conclude that k = m. Proceeding this way, we see that σ has to de-
compose as a product of cycles of equal length, say m. Suppose m = 2. Then, σ is a product of
transpositions. Since σ is an even permutation, there must be an even number of transpositions in
the decomposition. Moreover, since σ is non-trivial, we must have at least one (and hence, at least
two) transpositions. Thus,

σ = (a1 a2)(a3 a4) · · · (a2r−1 a2r)

with r ≥ 2. Since n ≥ 5, there exists a b 6= a1,a2,a3,a4. Let τ = (a3 a4 b). Define the commutator
of τ with σ as γ := τστ−1σ−1. Since σ ∈ N and N is normal, we conclude that γ ∈ N. The fixed
points of σ are carried over to γ. That is, σ(j) = j =⇒ γ(j) = j. Moreover, a1 and a2, which were
not fixed points of σ, have become fixed under γ. Thus, γ has strictly more fixed points than σ,
which is a contradiction. Hence,m 6= 2 andm ≥ 3.

We again consider the decomposition

(a1 . . . am)(b1 . . . bm) · · ·

wherem is now at least 3. Suppose σ is not a 3-cycle. Then, choose distinct r, s 6= a1,a2,a3 (this is
again possible since n ≥ 5). Now, consider τ = (a3 r s) ∈ An and the commutator γ = τστ−1σ−1.
As before, we have γ ∈ N. We may again verify that γ preserves the fixed points of σ, and that

9Note that the two cycle (4 5) also permutes with σ but it is an odd permutation, hence not an element of A5.
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γ(a2) = a2. Hence, γ has strictly more fixed points than σ, which is a contradiction. Hence, σmust
be a 3-cycle in which case it generates the entire group An by Lemma 6.26, and N = An. Thus, a
nontrivial subgroup N cannot exist, and hence An is simple for n ≥ 5.
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§7. Sylow Theorems

Theorem 7.1 (Cauchy’s Theorem). Let G be a finite group and let p be a prime. If p divides the
order of G, then G has a subgroup of order p.

Proof. Consider the set
S =
{
(x1, . . . , xp) ∈ Gp | x1 · · · xp = 1

}
.(

σ, (x1, . . . , xp)
)
7−→ (

xσ(1), . . . , xσ(p)
)

for all σ ∈ H and (x1, . . . , xp) ∈ S. Notice that the orbit of the (1, . . . , 1) is itself. Since S can be
written as a disjoint union of orbits, it follows that there is at least another orbit that has only
one element (this follows from divisibility considerations, since p divides |S|). Thus, there exists
a p-tuple (x1, . . . , xp) 6= (1, . . . , 1) such that O((x1, . . . , xp)) =

{
(x1, . . . , xp)

}
. Since the orbit of

this tuple contains only itself, and since permutations in H cyclically permute the elements of the
tuple, it follows that each element of the tuple. That is, such an element of the form (x, . . . , x) for
some x ∈ Gwith x 6= 1. Since (x, . . . , x) ∈ S, it follows that xp = 1. It then follows that |x| = p, and
the cyclic subgroup 〈x〉 is a subgroup of G of order p.

Proposition 7.2. Let G be a finite group of order pn where p is a prime and n ∈ N+. Then, there
are normal subgroups

{1} = G0 < G1 < . . . < Gn = G

such that |Gi| = pi and Gi E G for i = 0, . . . ,n.

Proof. We prove this by induction on n. In the case that n = 1, we trivially have G0 = {1} and
G1 = G. Now, assume that n ≥ 2 and that the result holds for n− 1. By Theorem 6.21, G has a
non-trivial center, and p divides |Z(G)|. By Cauchy’s Theorem, Z(G) has an element of order p,
say z. We define G1 = 〈z〉. Clearly, |G1| = p. Moreover, since G1 ≤ Z(G) and Z(G) E G, we
conclude that G1 E G. Now, define H = G/G1. We have |H| = pn/p = pn−1. By the induction
hypothesis, H has normal subgroups

{1} = H0 < H1 < . . . < Hn−1 = H

such that |Hi| = pi and Hi E H for i = 0, . . . ,n − 1. By the Correspondence Theorem, there
is a normal subgroup Gi+1 of G such that Gi+1/G1 = Hi for i = 0, . . . ,n− 1. Moreover, |Gi+1| =
|G1| ·|Hi| = pi+1 for i = 0, . . . ,n− 1. We also have thatGi ≤ Gi+1 by the Correspondence Theorem.
This concludes the proof.

Definition 7.3. Let G be a group and let H ≤ G be a subgroup. If |H| = pi for a prime p and some
positive integer i, then H is called a p-subgroup of G.
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Definition 7.4. Let G be a finite group and |G| = pnm where p is a prime, n is a positive integer,
and gcd(p,m) = 1. A subgroup of G having order pn is called a Sylow p-subgroup of G. The set
of all Sylow p-subgroups of G is denoted as Sylp(G). The number of Sylow p-subgroups of G is

denoted as np :=
∣∣∣Sylp(G)

∣∣∣.
Theorem 7.5 (Sylow Theorems). Let G be a finite group and |G| = pnm where p is a prime, n is a
positive integer, and gcd(p,m) = 1. Then, the following are true.

1. G has subgroups of order pi for i = 1, . . . ,n. In particular, G has a Sylow p-subgroup, that
is, np ≥ 1.

2. Any p-subgroup of G is contained in a Sylow p-subgroup of G.

3. Any two Sylow p-subgroups of G are conjugates of each other.

4. np ≡ 1 (mod p) and np | m.

Proof.

1. When |G| = 1, the statement is trivially true. Now, assume that the statement is true for all
finite groups of order less than |G|. The class equation of G is

|G| = |Z(G)|+
∑
g

[
G : Z(g)

]
where the sum runs over one representative from each conjugacy class that is not the center.
Suppose that p - |Z(G)|. Since p divides |G|, there exists a g in the second sum such that
p - |G| /|Z(g)|. Since pn divides the order of G, it follows that pn divides |Z(g)|. Note that
Z(g) is not the whole group since g is not a central element. Hence, |Z(g)| < |G|. From the
induction hypothesis, it follows that Z(g) has subgroups of order pi for i = 1, . . . ,n and in
particular, a Sylow p-subgroup. Since Z(g) ≤ G, this result extends to G as well. Now, if
p divides Z(G), then by Cauchy’s Theorem, there exists an element z ∈ Z(G) of order p.
Let H = 〈z〉. Then, H E G. We leave the rest of the proof as an exercise to the reader. The
proof follows along similar lines as Proposition 7.2, by considering the quotient group G/H
(which has order strictly less than |G|), proving the result there and pulling it back to G by
the Correspondence Theorem.

2. Let H′ ≤ G and
∣∣H′∣∣ = pi for some 0 ≤ i ≤ n. We must show that H′ is contained in a Sylow

p-subgroup of G. Suppose H is a Sylow p-subgroup of G. Consider the set

S = G/H =
{
gH | g ∈ G

}
.

We have |S| = |G| /|H| = m. Let H′ act on S by translation, with action defined from H× S
to S as (h,gH) 7→ hgH. We leave it to the reader to verify that this is indeed a group action.
Now, S is a disjoint union of H′-orbits and thus

|S| =
∑
h

|Oh|
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where the sum runs over one representative from each orbit. Note that each orbit must have
cardinality of the form pk for k = 0, . . . , i, since |O|h must divide |H|′ which is pi. However,
|S| = m and p - m. We hence conclude that there is at least one orbit that has only one
element, that is, an orbit consisting of a single left coset, say gH. We thus have

hgH = gH for all h ∈ H′

=⇒ g−1hg ∈ H for all h ∈ H′

=⇒ g−1H′g ⊆ H
=⇒ H′ ⊆ gHg−1

Since
∣∣∣gHg−1∣∣∣ = pn, gHg−1 is also a Sylow p-subgroup of G. Hence, H′ is contained in a

Sylow p-subgroup of G.

3. In the above, if |H|′ = pn, then we clearly have H′ = gHg−1. Hence, any two Sylow p-
subgroups are conjugates of each other.

4. As defined earlier, Sylp(G) denotes the set of all Sylow p-subgroups of G. G acts on Sylp(G)
by conjugation, with action from G× Sylp(G) to Sylp(G) defined as (g,H) 7→ gHg−1. Since
every Sylow p-subgroup is a conjugate of a Sylow p-subgroup, there is only one orbit with
respect to this group action, and hence, the group G acts transitively on Sylp(G). If P is a

Sylow p-subgroup, then Sylp(G) =
{
gPg−1 | g ∈ G

}
. By the Orbit-Stabiliser Formula,∣∣∣Sylp(G)

∣∣∣ = [G : GP] =
|G|
|GP|

.

Now,
GP =

{
g ∈ G | gPg−1 = P

}
= N(P).

Since N(P) contains P, |N(P)| ≥ pn. Now, the orbit-stabiliser formula immediately tells us
that

∣∣∣Sylp(G)
∣∣∣ = np | m. Now, it remains to show that np ≡ 1 (mod p).

Now, we consider the Sylow p-subgroup, P, act on Sylp(G) with the same action as defined
as above. Now, P ∈ Sylp(G) and OP = {P}. Suppose Q ∈ Sylp(G), Q 6= P with OQ = {Q}.
Now,

OQ =
{
gQg−1 | g ∈ P

}
=
{
OQ
} ⇐⇒ gQg−1 = Q for all g ∈ P

Thus, P ⊆ N(Q), and thus P ≤ N(Q). Moreover, Q E N(Q) by Proposition 6.16. By
Proposition 3.14, PQ ≤ N(Q). Since Q E N(Q), we also have Q E PQ. By the Third
Isomorphism Theorem,

PQ

Q
∼=

P

P ∩Q =⇒ ∣∣∣∣PQQ
∣∣∣∣ = ∣∣∣∣ P

P ∩Q

∣∣∣∣ = pi for some i.

Thus, |PQ| = pi+n, which implies that i = 0 and |PQ| = pn. Since P ≤ PQ and Q E PQ, and
|P| = |Q| = |PQ|, it follows that P = Q = PQ. The main conclusion is that when P acts on
Sylp(G), there is only one singleton orbit. All other orbits have cardinality pi for some i ≥ 1.
Since Sylp(G) is a disjoint union of these orbits, we may write out the cardinality of Sylp(G)
(which is np) as the sum of cardinalities of all disjoint orbits. Now, ‘modding’ out by p gives
us np ≡ 1 (mod p).
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§8. Classification of Groups

§§8.1. Isomorphism Classes of Groups

We now classify all groups of order at most 13 using the Sylow theorems, along with some other
specific orders.

Proposition 8.1. Let p be a prime. Up to isomorphism, there is exactly one group of order p,
namely the cyclic group Cp.

Proof. We leave the proof as an exercise to the reader. (Hint: Lagrange’s Theorem).

Theorem 8.2. Let p be a prime. Up to isomorphism, there are only two groups of order p2, namely,
the cyclic group Cp2 , and the group Cp ×Cp.

Proof. Let |G| = p2 and let Z(G) be the center of G. We first show that G must be abelian. By
Theorem 6.21, Z(G) is non-trivial. By Lagrange’s Theorem, Z(G) must have order p or p2. If Z(G)
has order p2, then Z(G) = G, so that G is abelian. If Z(G) has order p, then G/Z(G) has order p.
Hence, G/Z(G) is cyclic and hence abelian. However, this forces G to be abelian, in which case
Z(G) = G and |Z(G)| = p2, which is a contradiction. Hence, G is abelian.

Now, suppose there was an element of order p2 in G. Then, G ∼= Cp2 . If not, then all elements
(except identity) have order p. Let x be one such element. Now, choose y /∈ 〈x〉. Both 〈x〉 and
〈y〉 are normal subgroups of G, intersecting trivially. By Proposition 3.14, the cardinality of their
product matches the cardinality of G. Hence, G is the internal direct product of 〈x〉 and 〈y〉, both
of which are isomorphic to Cp. Theorem 3.13 now tells us that G ∼= Cp ×Cp.

Corollary 8.3. Up to isomorphism, there are only two groups of order 4, namely, the cyclic group
C4, and the Klein-four group V .

Proof. By Theorem 8.2, C4 and C2 × C2 are the only two groups of order 4. Since V is a group of
order 4, and V is not isomorphic to C4 (why?), we conclude that V ∼= C2 ×C2.

Proposition 8.4. Let G be a group of order mpn where m > 1 and p is prime. If np = 1, then G is
not simple.

Proof. Let H be the unique Sylow p-subgroup of G. H is clearly a proper non-trivial subgroup of G
since |H| = pn and 1 < pn < mpn. Moreover, for any g ∈ G, gHg−1 is a Sylow p-subgroup of G by
the third Sylow theorem. By uniqueness, gHg−1 = H for all g ∈ G, so that H is normal. Hence, G
is not simple.
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Theorem 8.5. Up to isomorphism, there are only two groups of order 6, namely the cyclic group
of order 6, C6, and the group of permutations S3.

Proof. Let |G| = 6 = 2 · 3. By the first Sylow theorem, G has a Sylow 2-subgroup, say H, and a
Sylow 3-subgroup, say K. We will let n2 denote the number of Sylow 2-subgroups of G, and n3
denote the number of Sylow 3-subgroups of G. By the fourth Sylow theorem,

n2 ≡ 1 (mod 2) and n2 | 3 =⇒ n2 = 1 or 3.
n3 ≡ 1 (mod 3) and n3 | 2 =⇒ n3 = 1.

Hence, there is a unique Sylow 3-subgroup of G, which is K, that is a normal subgroup of G by
Proposition 8.4. If n2 = 1, then H is also normal in G. Moreover, |H| = 2 and H = C2, and |K| = 3

and K = C3. Note that H and K are two normal subgroups of G that intersect only in identity. By
Proposition 3.14, we have

|HK| = |H| ·|K||H∩ K| =
2 · 3
1

= 6.

Again, from Proposition 3.14, we know that HK ≤ G. However, |HK| = |G| and hence HK = G.
Thus, G is an internal direct product of H and K. But H and K are the unique cyclic groups C2
and C3. Hence, G = C2C3. By Theorem 3.13, G ∼= C2 × C3. Now, since 2 and 3 are coprime, by
Proposition 3.3 and Example 3.2 in particular, we get that G ∼= C6.

Now, consider that n2 = 3, that is, there are 3 Sylow 2-subgroups of G, say H1,H2 and H3. Let
Syl2(G) = {H1,H2,H3} and let G act on Syl2(G) by conjugation, with action defined from G ×
Syl2(G) to Syl2(G) as

(g,H) 7−→ gHg−1 for all g ∈ G,H ∈ Syl2(G).

For a fixed g ∈ G, γg : Syl2(G) → Syl2(G) defined by γg(H) = gHg−1 defines a permutation
of Syl2(G), a set with 3 elements. Now, construct the natural homomorphism ϕ : G → S3 with
ϕ(g) = γg. Now,

kerϕ =
{
g ∈ G | gHig

−1 = Hi for all Hi ∈ Syl2(G)
}
= N(H1)∩N(H2)∩N(H3).

We leave it as an exercise to show that kerϕ = {1}. Hence, ϕ is injective. Moreover, |G| = |S3| = 6.
Thus, ϕ is a bijection, and G ∼= S3.

Theorem 8.6. Let p,q be distinct primes with p < q and let p - q− 1. Up to isomorphism, there’s
only one group of order pq, namely the cyclic group Cpq.

Proof. Let |G| = pq. By the first Sylow theorem, G has a Sylow p-subgroup, say H, and a Sylow
q-subgroup, say K. By the fourth Sylow theorem,

np ≡ 1 (mod p) and np | q =⇒ np = 1 (since p - q− 1).
nq ≡ 1 (mod q) and nq | p =⇒ nq = 1.
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Thus there is a unique Sylow p-subgroup, H, and a unique Sylow q-subgroup, K. By Proposi-
tion 8.4, H E G and K E G. Since they also intersect only in identity, by Proposition 3.14, we again
have

|HK| = |H| ·|K||H∩ K| = pq

and HK ≤ G. Since |HK| = |G|, we conclude that HK = G. Thus, G is an internal direct product of
H and K. ButH and K are the unique cyclic groupsCp andCq. Hence,G = CpCq. By Theorem 3.13,
G ∼= Cp ×Cq. Since q and p are coprime, by Proposition 3.3, G ∼= Cpq.

Theorem 8.7. Up to isomorphism, there are only two groups of order 21, namely, the cyclic group
C21 and the group presented as

〈
x,y | x7 = y3 = 1; yx = x2y

〉
.

Proof. Let |G| = 21 = 3 · 7. By the first Sylow theorem, G has a Sylow 3-subgroup, say H, and a
Sylow 7-subgroup, say K. By the fourth Sylow theorem,

n3 ≡ 1 (mod 3) and n3 | 7 =⇒ n3 = 1 or 7.
n7 ≡ 1 (mod 7) and n7 | 3 =⇒ n7 = 1.

Thus, there is a unique Sylow 7-subgroup, K, of G. By similar reasoning as before, K E G. Again.
if n3 = 1, then there is only one Sylow 3-subgroup of G. By similar reasoning as before, we get
G ∼= C21 in this case.

Now let us assume n3 = 7 and let H be a Sylow 3-subgroup of G. Since K E G, it follows from
Proposition 3.14 that HK ≤ G. Since H and K intersect only in identity, we get HK = G by similar
reasoning. Now, since |H| = 3 and |K| = 7 are both prime, these are both isomorphic to cyclic
groups of corresponding orders. Thus, H = 〈y〉 and K = 〈x〉 where |y| = 3 and |x| = 7. Now, since
K E G, we have

yxy−1 ∈ K =⇒ yxy−1 = xi for some i.

If i = 1, then G becomes abelian. If G were abelian then for any two Sylow 3-subgroups H and
H′, we have gHg−1 = H′ =⇒ H = H′, by commutativity. Hence, if G is abelian, there is a unique
Sylow 3-subgroup, but we have assumed n3 = 7. Hence, i 6= 1. Now,

yxy−1 = xi =⇒ y2xy−2 = y(yxy−1)y−1 = yxiy−1

= (yxy−1)i = xi
2

.

Similarly, we have

y3xy−3 = y(y2xy−2)y−1 = yxi
2

y−1

= (yxy−1)i
2

= xi
3

.

Since y3 = 1, we get x = xi
3
. Since |x| = 7, we get i3 ≡ 1 (mod 7), which has as its solutions

i = 1, 2, 4 (mod 7). Since i 6= 1, we conclude that i = 2 or 4. When i = 2, we get the presentation
we desired. We now show that the case i = 4 boils down to the same case as i = 2. In the case that
i = 4, we have

yxy−1 = x4 =⇒ y2xy−2 = x16 = x2.
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Note that y2 is also a generator of H. Hence, replacing y2 by y reduces the case i = 4 to the case
i = 2.

Note that we are not done with the proof since we have not yet proved that such a group exists!
Consider the group GL2(F7), where F7 is the finite field of 7 elements, namely Z7. Now consider
the elements

A =

[
1 1

0 1

]
and B =

[
2 0

0 1

]
It is easy to show that |A| = 7 and |B| = 3 in GL2(F7). We leave it as a simple computational
exercise to show that BA = A2B.

Theorem 8.8. Up to isomorphism, there are exactly five groups of order 12, namely

1. C12,

2. C2 ×C6,

3. A4,

4. D12, and

5.
〈
x,y | x4 = y3 = 1; xy = y2x

〉
.

Proof. Let |G| = 12 = 22 · 3. By the first Sylow theorem, G has a Sylow 2-subgroup, say H, and a
Sylow 3-subgroup, say K. Now, H has order 4, and hence, by Corollary 8.3, H is either the cyclic
group C4, or the Klein-four group V . Of course, K ∼= C3. Now, by the fourth Sylow theorem,

n2 ≡ 1 (mod 2) and n2 | 3 =⇒ n2 = 1 or 3.
n3 ≡ 1 (mod 3) and n3 | 4 =⇒ n3 = 1 or 4.

We claim that one of H and K has to be normal in G. Suppose K is not normal in G. Then, there
are 4 Sylow-3 subgroups, say K1,K2,K3, and K4. Moreover, each pair intersects only in identity.
Hence, we have ∣∣∣∣∣∣

4⋃
i=1

Ki

∣∣∣∣∣∣ = 9.
Since any of the Sylow 2-subgroups intersect with Sylow 3-subgroups only in identity, and since
|G| = 12, it follows that there must be exactly one Sylow 2-subgroup of G, which is normal by
reasoning as before. Hence, one of H and Kwill always be normal.

Case 1: Both H and K are normal in G. Of course, H and K intersect only in identity.

In this case, Proposition 3.14 tells us that G = HK since |HK| = |G| and HK ≤ G. Since both H and
K are normal, G is their internal direct product. By Theorem 3.13, G ∼= H× K. Thus, we have the
following two possibilities.

1. G ∼= C4 ×C4 ∼= C12.

2. G ∼= V ×C3 ∼= C2 ×C2 ×C3 ∼= C2 ×C6.
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Case 2: H is normal in G, but K is not normal.

In this case, there are 4 Sylow 3-subgroups, all of which are conjugate to each other. Let Syl3(G) =
{K1,K2,K3,K4}. Suppose G acts on Syl3(G) by conjugation, with action defined as

(g,Ki) 7−→ gKig
−1 for all g ∈ G,Ki ∈ Syl3(G).

This gives rise to a permutation representation ϕ : G→ S4, with ϕ(g) = γg, where γg : Syl3(G)→
Syl3(G) is defined as

γg(Ki) = gKig
−1 for all g ∈ G,Ki ∈ Syl3(G).

The kernel is given by

kerϕ =
{
g ∈ G | gKig

−1 = Ki for all i
}
=

4⋂
i=1

N(Ki).

Note that since every Ki is conjugate to every Kj, the orbit of each Ki is the entire set Syl3(G),
which has cardinality 4. The Orbit-Stabiliser Formula now gives us that |N(Ki)| = 3 for all i. But,
Ki ⊆ N(Ki) and |Ki| = 3 for all i. Hence, N(Ki) = Ki for all i. Since Ki’s intersect in identity. so
do N(Ki)’s. Thus, kerϕ is identity and ϕ is injective. Since G has 8 elements of order 3 (2 from
each Sylow 3-subgroup), imϕ has 8 3-cycles. However, there are exactly 8 3-cycles in the group
S4. Hence, imϕ is a subgroup of S4 that contains all 3-cycles. Moreover, |imϕ| = |A4| = 12. Since
A4 is generated by 3-cycles, it follows that imϕ = A4. Now, since ϕ is injective, G ∼= imϕ, by
Proposition 2.11. Hence, G ∼= A4.

Case 3: K is normal in G, H is not normal in G, and H ∼= C4.

Let H act on K via conjugation, with action defined as (h,k) 7→ hkh−1 for all h ∈ H,k ∈ K. Now,
define γh : K → K with γh(k) = hkh−1 for all h ∈ H,k ∈ K. Notice that γh cannot be the identity
map since that would force G to be abelian, which is a contradiction since H is not a normal
subgroup of G. Hence, there is only one other possibility for γh (why?). Suppose H = 〈x〉 and
K = 〈y〉. Now, γx(y) = y2 since γx is not the identity map. Hence, y2 = xyx−1 =⇒ xy = y2x. As
before, we must show that there is indeed such a group. That is, we must find a group Gwhich is
presented as

G =
〈
x,y | x4 = y3 = 1; xy = y2x

〉
.

Define

X =

[
0 −1
1 0

]
and Y =

[
ω 0

0 ω2

]

where ω = exp
(
2πι
3

)
. We leave it as a simple computational exercise to show that these two

elements satisfy the give requirements.

Case 4: K is normal in G, H is not normal in G, and H ∼= V .

Suppose K = 〈y〉. That is, K = {1,y,y2}. Consider the set S = {y,y2} and let H act on S via
conjugation. We can restrict the action of H to the set S since the conjugate of y must be y or y2,
and likewise, the conjugate of y2 must be y or y2. This is because conjugation preserves order
(Proposition 1.16). Now, the stabiliser of y, given by

Gy =
{
h ∈ H | hyh−1 = y

}
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can be easily shown to have order 2. Thus, there is a z ∈ H such that zyz−1 = y and z 6= 1, and
there is an x ∈ H such that xyx−1 = y2. Since H is abelian, we have xz = zx. Hence, we have the
following presentation for the group.

G =
〈
x,y, z | x2 = y3 = z2 = 1; xz = zx,yz = zy, xy = y2x

〉
.

We leave it as an exercise to show that the dihedral groupD12 satisfies the above presentations.

§§8.2. Simplicity of Groups

We now state some important results that allow us to classify several groups on the basis of their
simplicity.

Theorem 8.9. Any group with prime order is simple.

Proof. Let p be a prime number and let G be a group of order p. Let H be any subgroup of G. By
Lagrange’s Theorem, we have either|H| = 1 or|H| = p. In either case, H is a trivial subgroup of G.
Thus, G is simple and has no non-trivial normal subgroups.

Proposition 8.10. A group G is simple abelian if and only if it is of prime order.

Theorem 8.11. Let p be a prime number and let n ≥ 2 be an integer. Any group with order pn is
not simple.

Proof. AsG is a p-group, it has a non-trivial center, Z(G), by Theorem 6.21. If Z(G) 6= G, then Z(G)
is a proper non-trivial normal subgroup of G, and hence G is not simple. Now, assume Z(G) = G,
so that G is abelian. Let x ∈ G with x 6= 1. We have |x| = pm for some 1 ≤ m ≤ n. Define
y := xp

m−1
, so that |y| = p. Now, 〈y〉 is a proper non-trivial subgroup of G which is normal since

G is abelian. Hence, G is not simple.

Theorem 8.12. Let p be a prime number and letm be an integer with 1 < m < p. Any group with
ordermpn is not simple.

Proof. By the fourth Sylow theorem np ≡ 1 (mod p) so that np = 1+kp for some k ∈N. However,
np | m and sincem < p, this forces k = 0. Thus, np = 1 and there is exactly one Sylow p-subgroup
ofG, sayH. By similar reasoning as before,H is a normal subgroup ofG. It is also non-trivial since
|H| = pn and 1 < pn < mpn. Hence, G is not simple.

Theorem 8.13. Let p and q be distinct prime numbers. Any group with order p2q is not simple.
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Proof. Let G be a group of order p2q. We show that G is not simple.

Case 1: p > q.

By the fourth Sylow theorem, np | q and np ≡ 1 (mod p). The first condition gives us np = 1 or
np = q. Since q < p, q 6≡ 1 (mod p). Thus, np = 1, and G is not simple.

Case 2: p < q.

Again, by the fourth Sylow theorem, we have nq ∈ {1,p,p2}. If nq = 1, we are done. As before,
nq 6= p since p < q. Now, assume that nq = p2. Thus, there are exactly p2 Sylow q-subgroups of
G. Moreover, each pair of Sylow q-subgroups intersects only in identity since each has order q, a
prime. Hence, these p2 Sylow q-subgroups capture exactly p2(q− 1) non-identity elements of G.
Since the remaining p2 elements (barring identity) cannot be part of any Sylow q-subgroup, and
since np ≥ 1, we conclude that these remaining p2 elements form a unique Sylow p-subgroup of
G, giving us np = 1. Thus, G is not simple.

Theorem 8.14. Let p,q, r be distinct prime numbers. Any group with order pqr is not simple.

Proof. We may assume without loss of generality that p < q < r. Let G be a group of order pqr.
If any of np,nq or nr are 1, we know that G is not simple. Assume now that each of the above
is strictly greater than 1. Now, nr | pq. Since we have assumed nr > 1, and since p,q < r, we
conclude that nr = pq. Thus, we have pq Sylow r-subgroups, that intersect pairwise in identity
(since each has prime order). Thus, the number of elements having order r is or = pq(r− 1). Now,
nq > 1 and nq | pr gives us nq ∈ {p, r,pr}. Since p < q, we conclude that nq 6= p and hence
nq ≥ r. Thus, oq ≥ r(q− 1). Similarly, op ≥ p(q− 1).

Since or,oq, and op are counting distinct non-identity elements of G, we have

|G| ≥ or + oq + op + 1 ≥ pq(r− 1) + r(q− 1) + q(p− 1)
=⇒ |G| ≥ pqr+ (r− 1)(q− 1)︸ ︷︷ ︸

>0

> pqr.

Thus, we arrive at a contradiction since |G| = pqr, which concludes the proof.

Theorem 8.15. Let p be a prime and let n be an integer with n > 1. Any group with order
(p+ 1) · pn is not simple.

Proof. Let G be a group with the given order. By the fourth Sylow theorem, we have np | (p+ 1)
and np ≡ 1 (mod p). This gives us np = 1 or np = p + 1. If np = 1, we are done. Now,
assume np = p+ 1. Thus, G has p+ 1 Sylow p-subgroups, so that Sylp(G) = {P1, . . . ,Pp+1}. Let
ϕ : G → Sp+1 be the natural homomorphism induced by the group action. By the third Sylow
theorem, G acts on Sylp(G) transitively, and hence kerϕ 6= G. Assume now that the kernel is
trivial, in which case ϕ is injective. Thus, |imϕ| = (p + 1) · pn. Now, since imϕ ≤ Sp+1 and∣∣Sp+1∣∣ = (p+ 1)!, by Lagrange’s Theorem, we must have (p+ 1) · pn | (p+ 1)! ⇐⇒ pn | p! which
is a contradiction (why?), since n > 1. Hence, the kernel is a proper non-trivial subgroup of G.
Since kernels of all homomorphisms are normal, it follows that G is not simple.
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The above theorems are able to classify most groups of order at most 200 on the basis of their
simplicity. For an exhaustive list, I urge the reader to refer to Aryaman’s website.

https://aryamanmaithani.github.io/alg/groups/simple/sieve/
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§9. Rings and Fields

§§9.1. Definitions

Definition 9.1 (Ring). A ring is a set R together with two binary operations + and · (called addition
and multiplication) satisfying the following properties.

1. (R,+) is an abelian group with the identity element with respect to + denoted by 0.

2. Multiplication is associative, that is, a · (b · c) = (a · b) · c for all a,b, c ∈ R.

3. There is a multiplicative identity in R, denoted by 1, that is, ∃ 1 ∈ R such that 1 · a = a · 1 = a
for all a ∈ R.

4. The distributive laws hold. That is,

a · (b+ c) = a · b+ a · c

(b+ c) · a = b · a+ c · a

for all a,b, c ∈ R.

We henceforth forgo the use of · and denote multiplication simply by juxtaposition. Moreover, we
denote the additive inverse of a as −a.

Definition 9.2 (Pseudo-Ring). Let R be a set together with two binary operations + and · (called
addition and multiplication). If R satisfies only the ring axioms 1, 2 and 4, we call R a pseudo-ring
or a non-unital ring or a rng (“ring” without “i”, the multiplicative identity).

Proposition 9.3. Let R be a ring. Then, the following is true.

1. 0a = a0 = 0 for all a ∈ R.

2. (−a)b = a(−b) = −(ab) for all a,b ∈ R.

3. (−a)(−b) = ab for all a,b ∈ R.

4. The multiplicative identity, 1, is unique and −a = (−1)a.

Example 9.4. Some examples of rings:

1. Z, Q, R and C are all rings with respect to the usual addition and multiplication.

2. For any n ∈N+, Zn is a ring with respect to addition and multiplication modulo n.

3. Consider n ∈N+ and letMn(R) be the set of all n× nmatrices with entries in R. Mn(R) is
a ring with respect to the usual addition and matrices.
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Definition 9.5 (Commutative Ring). A ring R is said to be commutative if ab = ba for all a,b ∈ R.

Definition 9.6 (Zero Divisor). Let R be a ring. An element a ∈ R is called a zero divisor if there is
a non-zero b ∈ R such that ab = 0 or ba = 0.

Definition 9.7 (Unit). Let R be a ring. An element a ∈ R is called a unit if there is some b ∈ R such
that ab = ba = 1. The set of units in R is denoted as R×. We call b the10 multiplicative inverse of
a and denote it as a−1 or 1/a.

Definition 9.8 (Irreducible Element). Let R be a commutative ring. An element f ∈ R is said to be
irreducible if f is non-zero, non-unit in R and whenever f = gh for some g,h ∈ R, either g is a unit
or h is a unit.

Definition 9.9 (Division Ring). Let R be a ring. R is called a division ring or a skew field if R× =
R \ {0}.

Remark 9.10. A division ring necessarily requires 1 6= 0 since 1 = 0 =⇒ R = {0}. In this case, 0 is
indeed a unit and R× = {0} 6= ∅ = R \ {0}.

Definition 9.11 (Field). A commutative division ring is called a field.

Proposition 9.12. A field has zero as the only zero divisor.

Definition 9.13 (Domain). A ring R with 1 6= 0 is called a domain if it has no non-zero zero
divisors.

Definition 9.14 (Integral Domain). A commutative domain is called an integral domain.

Proposition 9.15. If R is an integral domain, then ab = ac =⇒ a = 0 or b = c for all a,b, c ∈ R.

Proof. If ab = ac, then a(b− c) = 0. If a = 0, the result follows trivially. If a 6= 0, then a is also
not a zero divisor, since R is an integral domain. Hence, b− c = 0, giving us b = c.

10prove that it is unique.
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Proposition 9.16.

1. Every field is an integral domain.

2. Every finite integral domain is a field.

Proof.

1. This follows trivially from Proposition 9.12.

2. We give an outline of the proof. Suppose that the elements of the finite integral domain are
0,a1, . . . ,an. Fix some non-zero ai. Now, consider the set

{0ai,a1ai, . . . ,anai}

From Proposition 9.15, it follows that each element of the above set is distinct. Hence, one of
them must be equal to 1, the multiplicative identity. Hence, for every non-zero ai, we have
a multiplicative inverse.

§§9.2. Polynomial Rings

Definition 9.17 (Polynomial). Let R be a commutative ring and let x be an indeterminate. The
formal sum

anx
n + an−1x

n−1 + . . .+ a1x+ a0

with n ≥ 0 and each ai ∈ R is called a polynomial in xwith coefficients in R.

Definition 9.18 (Degree). Let f(x) be a polynomial in xwith coefficients in R. The degree of f(x) is
defined as

deg f(x) := max
{
i ∈N | ai 6= 0

}
By convention, we define the degree of the zero polynomial (one which has all coefficients equal
to 0) as −∞.

We denote the set of all polynomials in x with coefficients in R as R[x]. We define the addition or
sum of two polynomials “componentwise”. That is,

(anx
n + an−1x

n−1 + . . .+ a1x+ a0) + (bnx
n + bn−1x

n−1 + . . .+ b1x+ b0)

= (an + bn)x
n + (an−1 + bn−1)x

n−1 + . . .+ (a1 + b1)x+ (a0 + b0)

For multiplication, we first define (axi)(bxj) = abxi+j for polynomials with only one non-zero
term. We then extend this to all polynomials using the distributive laws. That is,

(a0 + a1x+ a2x
2 + . . .) · (b0 + b1x+ b2x2 + . . .)

= (a0b0) + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2 + . . .
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In general, the coefficient of xk in the product will be
∑k
i=0 aibk−i.

Proposition 9.19. Let R be a commutative ring and let R[x] denote the set of all polynomials in x
with coefficients in R. Then, under the above defined addition and multiplication, R[x] forms a
commutative ring, called the ring of polynomials in x with coefficients in R.

The ring R itself appears in R[x] as the constant polynomials. The multiplicative identity in R[x] is the
constant polynomial 1 where 1 is the multiplicative identity in R. For example, Z[x] and Q[x] are
examples of such rings. The ring Z3[x] consists of polynomials in x where coefficients are either
0, 1 or 2 and addition, multiplication is carried out modulo p. For example, if

p(x) = x2 + 2x+ 1 and q(x) = x3 + x+ 2

then

p(x) + q(x) = x3 + x2

p(x) · q(x) = x5 + 2x4 + 2x3 + x2 + 2x+ 2

Definition 9.20 (Power Series). Let R be a commutative ring and let x be an indeterminate. The
formal sum

a0 + a1x+ a2x
2 + . . .

with each ai ∈ R is called a (formal)11 power series in xwith coefficients in R.

Note that unlike a polynomial, a power series may have infinitely many terms. We can think of
both polynomials and power series as a sequence of coefficients. The sequence of coefficients in
a polynomial would have to be an eventually zero sequence (or a sequence with finite support),
whereas there is no such restriction on the sequence of coefficients for a power series. Moreover,
addition and multiplication of two formal power series follow the same pattern as the polynomi-
als.

Proposition 9.21. Let R be a commutative ring and let RJxK denote the set of all formal power
series in x with coefficients in R. Then, with addition and multiplication as in R[x], RJxK forms a
commutative ring, called the ring of formal power series in x with coefficients in R.

Unlike the polynomials, there are non-trivial (non-constant) units in the ring of power series. For
example, consider the ring ZJxK and consider f(x) = 1− x. One may verify that the power series
g(x) = 1+ x+ x2 + . . . is a multiplicative inverse of f(x), i.e, f(x)g(x) = 1. In fact, the following is
true.

Proposition 9.22. Let R be a commutative ring and let f(x) =
∑∞
i=0 aix

i be a formal power series
in RJxK. Then f(x) is a unit in RJxK if and only if a0 is a unit in R.

11the term ‘formal’ signifies that we are only dealing with the ‘expression’ a0 + a1x+ . . . but not actually evaluating
it, so we need not worry about convergence.
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Proof. Let f(x) be the formal power series
∑∞
i=0 aix

i and suppose g(x) =
∑∞
j=0 bjx

j be a formal
power series that is a multiplicative inverse of f(x). We then have

f(x)g(x) =

∞∑
k=0

 k∑
i=0

aibk−i

 xk = 1
On comparing coefficients, we get a0b0 = 1. If a0 is not a unit in R then there does not exist any b0
in R satisfying the above equation, and hence, such a g(x) does not exist and f(x) is not a unit in
RJxK. If a0 is invertible in R, then we define b0 := a−10 . For k ≥ 1, we have

k∑
i=0

aibk−i = 0 =⇒ a0bk = −

k∑
i=1

aibk−i

Multiplying throughout by b0, we get

bk = −b0

k∑
i=1

aibk−i

This allows us to solve for each coefficient bi by substituting k = 1, 2, . . . sequentially. Thus, a
multiplicative inverse of f(x) exists in RJxK and hence f(x) is a unit in this ring.

We now restrict ourselves to polynomials over fields.

Proposition 9.23 (Division Algorithm). Let F be a field and let f(x),g(x) ∈ F[x] with g(x) 6= 0.
Then, there are unique polynomials q(x), r(x) ∈ F[x] such that

f(x) = g(x)q(x) + r(x)

and deg r(x) < degg(x).

Proof. We first prove existence. If deg f(x) < degg(x), then taking q(x) = 0 and r(x) = f(x) works.
Assume that deg f(x) ≥ degg(x). We can induct on n = deg f(x). If n = 0, then degg(x) = 0,
since g(x) is non-zero. In this case, f(x),g(x) are constant polynomials. We take r(x) = 0 and
q(x) = f(x)/g(x). Here 1/g(x) represents the multiplicative inverse of g(x), which must exist
since g(x) is a non-zero constant polynomial and F is a field.

Now, suppose n > 0 and the result holds for polynomials of degree less than n. Suppose f(x) =
anx

n + an−1x
n−1 + . . .+ a1x+ a0 and g(x) = bmx

m + bm−1x
m−1 + . . .+ b1x+ b0 where ai,bj ∈ F

with an 6= 0 and bm 6= 0. Since bm 6= 0, it has a multiplicative inverse. Moreover, n ≥ m by
assumption. Now, consider

f1(x) = f(x) −
an

bm
xn−m · g(x)

Then, f1(x) ∈ F[x] and deg f1(x) < n. By the induction hypothesis, there exist q1(x), r1(x) ∈ F[x]
such that f1(x) = g(x)q1(x) + r1(x) and deg r1(x) < m. Now, define

q(x) :=
an

bm
xn−m + q1(x) and r(x) := r1(x)
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Verify that these two polynomials satisfy the conditions of the proposition, proving existence.

To prove uniqueness, suppose there are q̃(x), r̃(x) ∈ F[x] also satisfying the above conditions. We
have

q(x)g(x) + r(x) = q̃(x)g(x) + r̃(x) =⇒ r(x) − r̃(x) = g(x)
(
q(x) − q̃(x)

)
Observe that if q− q̃ is non-zero, then the degree of the RHS is at least degg(x) and, if r− r̃ is
non-zero, then the degree of the LHS is strictly less than degg(x). Hence, equality holds only if
r̃(x) = r(x) and q̃(x) = q(x), proving uniqueness.

Remark 9.24. The above result is also valid for an integral domain, provided the leading coeffi-
cient of g(x) is a unit.

Definition 9.25 (Root). Let R be a commutative ring and let f(x) ∈ R[X]. An element α ∈ R is said
to be a root of f(x) if f(α) = 0.

Theorem 9.26 (Remainder Theorem). Let K be an integral domain and let α ∈ K, f(x) ∈ K[x].
Then, the remainder upon dividing f(x) by (x−α) is f(α).

Proof. Since the polynomial g(x) = (x− α) is monic, the Division Algorithm applies. Thus, there
exist unique q(x), r(x) ∈ K[x] such that

f(x) = q(x)(x−α) + r(x)

and deg r(x) < 1. Hence, r(x) is a constant polynomial, say r. Substituting x = α, we get

f(α) = q(α)(α−α) + r =⇒ f(α) = r

Theorem 9.27 (Factor Theorem). Let K be an integral domain. Let α ∈ K and let f(x) ∈ K[x]. Then,
α is a root of f(x) if and only if (x − α) is a factor of f(x), that is, f(x) = (x − α)h(x) for some
h(x) ∈ K[x].

Proof. If α is a root of f(x), then f(α) = 0. Hence, by the Remainder Theorem, the remainder upon
dividing f(x) by (x−α) is 0. Hence, f(x) = h(x)(x−α) for some h(x) ∈ K[x].

Conversely, suppose that f(x) = (x− α)h(x). Then, the remainder upon diving f(x) by (x− α) is
0. Hence, by the Remainder Theorem, f(α) = 0 and α is a root of f(x).

Corollary 9.28. Let K be an integral domain and let f(x) ∈ K[x] be a non-zero polynomial of degree
n. Then, f(x) has at most n roots in K.

Proof. We leave the proof as an exercise to the reader. (Hint: induction).
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Theorem 9.29 (Fundamental Theorem of Algebra - Version 1). Every non-zero polynomial f(x) ∈
C[x] has a root in C.

Theorem 9.30 (Fundamental Theorem of Algebra - Version 2). For f(x) ∈ C[x] of degree n 6= 0, we
can write

f(x) = a

h∏
i=1

(x−αi)
ei

for some a ∈ C, a 6= 0, h ≥ 0, distinct α1, . . . ,αh ∈ C and e1, . . . , eh ∈ N+. In particular, ei is the
multiplicity of αi as a root of f(x) and

h∑
i=1

ei = n

Definition 9.31. Let R be a commutative ring. Given f(x),g(x) ∈ R[x], we say that g(x) divides
f(x) and write g(x) | f(x) if f(x) = g(x)h(x) for some h(x) ∈ R[x].

Definition 9.32 (Irreducible Polynomial). Let R be a commutative ring. A polynomial f(x) ∈ R[x]
is said to be irreducible if f(x) is an irreducible element in R[x].

Proposition 9.33. Let R be an integral domain. (x−α) is irreducible in R[x] for any α ∈ R.

Definition 9.34 (Nilpotent Element). Let R be a commutative ring. An element a ∈ R is said to be
nilpotent if there exists n ∈N+ such that an = 0.

Proposition 9.35. Let R be a commutative ring and let a,b be nilpotent elements in R. Then,

1. a+ b is nilpotent.

2. ar = ra is nilpotent for all r ∈ R. In particular, −a is nilpotent.

3. If u ∈ R is a unit, then u− a is also a unit.

Proof. We leave the first part as an exercise to the reader (Hint: Binomial theorem). The second
part is also trivial. We now prove the third part.

Let n ∈N+ be such that an = 0. Suppose that u = 1. In this case, we have

1 = 1− an = (1− a)(an−1 + an−2 + . . .+ a+ 1)

Thus 1 − a = u − a is a unit with multiplicative inverse (an−1 + an−2 + . . . + a + 1). Now, in
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general, suppose u is a unit with uw = 1 and suppose a is nilpotent. We then have

(u− a) = u(1−wa)

Since a is nilpotent, wa is also nilpotent, by the second part. Thus, by the above argument, (1−
wa) is a unit. Thus, (u− a) is a product of two units and is a unit itself.

Theorem 9.36. Let R be a commutative ring and let f(x) = anxn + . . .+ a0 ∈ R[x]. f(x) is a unit in
R[x] if and only if a0 is a unit in R and ai is nilpotent for each i > 0.

Proof. One direction is easy to show. We leave it as an exercise to show that if a0 ∈ R is a unit then
the constant polynomial a0 is a unit in R[x]. It is also trivial to show that aixi is nilpotent in R[x] if
and only if ai is nilpotent. Thus, if a0 is a unit and ai is nilpotent for each i > 0, the polynomial
f(x) = a0 + . . .+ anx

n is a unit in R[x] since it is the sum of a unit and nilpotent elements.

Proposition 9.37. An integral domain has no nonzero nilpotent elements.

Corollary 9.38. Let R be an integral domain. Then, the group of units of R[x] is precisely the group
of constant polynomials in R[x] which are units in R.

Proof. The proof follows trivially from Theorem 9.36 and Proposition 9.37.

Proposition 9.39. Let F be a field and f(x) ∈ F[x] have degree d such that 1 ≤ d ≤ 3. If f(x) has
no root in F[x], then f(x) is irreducible in F[x].

Proof. Since deg f(x) ≥ 1, we see that f(x) is non-zero and non-unit in F[x] (Corollary 9.38).
Further, if f(x) = g(x)h(x) for some g(x),h(x) ∈ F[x] and if both g(x),h(x) are non-units, then
degg(x) ≥ 1 and degh(x) ≥ 1. Since deg f(x) ≤ 3 and degg(x) + degh(x) = deg f(x), we con-
clude that at least one of g(x) and h(x) must have degree 1. Hence, at least one of them has a
root in F. However, this implies that f(x) has a root in F, which is a contradiction. Hence, f(x) is
irreducible.

This allows us to easily conclude that x2+1 is irreducible in R[x]. Note that Proposition 9.39 breaks
down for degree-4 polynomials. For example, consider the polynomial f(x) = x4+ 3x2+ 2 ∈ R[x].
f(x) clearly does not have a root in R since a4 + 3a2 + 2 ≥ 2 > 0 for all a ∈ R. However, we may
factorise f(x) as (x2 + 1)(x2 + 2), both of which are non-units.

Proposition 9.40. An odd-degree polynomial of degree greater than 1 in R[x] is reducible.

Proof. This follows from an elementary result in calculus which states that an odd-degree polyno-
mial has a root in R. Once we know that the polynomial has a root in R, we may appeal to the
Factor Theorem, to conclude. We leave it to the reader to work out the details.
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Does the same work for Q[x]? That is, is an odd-degree polynomial in Q[x] of degree greater than
1 always reducible in Q[x]? (Hint: No).

Theorem 9.41 (Fundamental Theorem of Algebra - Version 3). Every non-zero polynomial in R[x]
can be factored as

f(x) = a · (x−α1) · · · (x−αr) · q1(x) · · ·qs(x)

where a ∈ R×, α1, . . . ,αr ∈ R, not necessarily distinct, and q1(x), . . . ,qs(x) are monic, quadratic
polynomials in R[x] with negative discriminants. That is, qi(x) is of the form x2 + bx+ c where
b, c ∈ R with b2 − 4c < 0, for all i ∈ {1, . . . , s}.

Theorem 9.42 (Fundamental Theorem of Algebra - Version 4). The only monic, irreducible poly-
nomials in C[x] are (x−α) where α ∈ C.

Theorem 9.43 (Fundamental Theorem of Algebra - Version 5). The only monic, irreducible poly-
nomials in R[x] are of the form (x− α) where α ∈ R, or of the form x2 + bx+ c where b, c ∈ R

with b2 − 4c < 0.

Theorem 9.44. Let F be a field and f(x) be a nonzero polynomial in F[x]. Then, f(x) can be factored
as

f(x) = a · p1(x) · · · ph(x)

where a ∈ F×, h ∈N and p1(x), . . . ,ph(x) are monic irreducible polynomials in F[x].

Proof. We leave the proof as an exercise to the reader. The proof follows along similar lines as the
proof for Theorem 0.20.

Definition 9.45 (Greatest Common Divisor). Let R be an integral domain and let f(x),g(x) ∈ R[x]
be such that f(x) and g(x) are not both zero. A polynomial h(x) ∈ R[x] is said to be a greatest
common divisor or gcd of f(x) and g(x) if the following hold.

1. h(x) | f(x) and h(x) | g(x).

2. If h̃(x) ∈ R[x] is such that h̃(x) | f(x) and h̃(x) | g(x), then h̃(x) | h(x).

If f(x),g(x) are both zero, we define the zero polynomial as the gcd of f(x) and g(x). We denote
the gcd of f(x) and g(x) as

(
f(x),g(x)

)
.

Remark 9.46. Suppose R is an integral domain. If the gcd of f(x) and g(x) exists, then it is unique
up to multiplication by a unit in R[x].
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Lemma 9.47. If F is a field, then for any f(x),g(x) ∈ F[x],
(
f(x),g(x)

)
exists and moreover, it can

be expressed as u(x)f(x) + v(x)g(x) for some u(x), v(x) ∈ F[x].

Proof. We leave this as an exercise too. The proof follows along similar lines as Proposition 0.14.

Corollary 9.48. Let F be a field and p(x) ∈ F[x] be irreducible. If p(x) | f(x)g(x) for some
f(x),g(x) ∈ F[x], then p(x) | f(x) or p(x) | g(x).

Proof. Again, the proof follows along similar lines as Proposition 0.15 and Corollary 0.17.

§§9.3. Subrings and Ideals

Definition 9.49 (Subring). Let S be a ring. A subset R of S is said to be a subring of S if R is a ring
with respect to addition and multiplication induced from S and R contains 1, the multiplicative
identity of S. In this case, we say that S is an overring or a ring extension of R.

Proposition 9.50. Let S be a ring and let R ⊆ R. R is a subring of S iff the following properties
hold.

1. 1 ∈ R.

2. R is closed under addition and subtraction. That is, a,b ∈ R =⇒ a+ b ∈ R and a− b ∈ R.

3. R is closed under multiplication. That is, a,b ∈ R =⇒ ab ∈ R.

Definition 9.51 (Subfield). If K is a field and F is a subring of K such that F is also a field, then F

is called a subfield of K. In this case, we say that K is an overfield or a field extension of F.

Example 9.52.

1. Z is a subring of Q. Q is a subring of R. This also tells us that Z is a subring of R. In general,
if S is a subring of R and T is a subring of S, then T is also a subring of R. In other words, the
relation “is a subring of”, is transitive (we leave the proof as an exercise). In fact, the above
examples are also fields themselves. Hence, Z is a subfield of Q, Q is a subfield of R and so
on. Equivalently, Q is a field extension of Z, R is a field extension of Q and so on. Naturally,
the relation “is a subfield of”, is also transitive.

2. 2Z is closed under addition and multiplication, however it has no multiplicative identity.
Hence, it is not a subring of Z.
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3. Z[ι] is a subring of C where Z[ι] is defined as

Z[ι] :=
{
m+nι | m,n ∈ Z

}
.

Z[ι] is called the ring of Gaussian integers.

4. Q[
√
2] is a subring of R where Q[

√
2] is defined as

Q[
√
2] :=

{
r+ s
√
2 | r, s ∈ Q

}
.

It is, in fact, a field. Note that for r, s ∈ Q, r+ s
√
2 6= 0 ⇐⇒ (r, s) 6= (0, 0) . For (r, s) 6= (0, 0),

we leave it as an exercise to verify that

r− s
√
2

r2 − 2s2
∈ Q[

√
2]

is a multiplicative inverse of r+ s
√
2. Thus, Q[

√
2] is a subfield of R. One may also verify

that Q[
√
2] is a field extension of Q.

Definition 9.53. Given rings R ⊆ S, and α ∈ S, we define R[α] to be the smallest subring of S
containing α and R.

Given fields F ⊆ K, and α ∈ K, we define F(α) to be the smallest subfield of K containing α and
F.

Similarly, given a set A ⊆ R (or A ⊆ F), we can talk about R[A] (or F(A)) to be the smallest ring
(or field) generated by A over R (or F).

Proposition 9.54. Let F ⊆ K be field and let A ⊆ K be a set. If A = ∅, then F(A) = F. Assume
A 6= ∅.

Let
M :=

{
a1 · · ·an | n ∈N,a1, . . . ,an ∈ A

}
be the set of all finite products of elements of A. Let

S :=
{
b0 + b1m+ 1+ · · ·+ bnmn | n ∈N,m1, . . . ,mn ∈M,b0,b1, . . . ,bn ∈ F

}
be the set of all finite sums of elements of M. (These are polynomials in A with coefficients in F).
Then,

F(A) =

{
s1
s2

| s1, s2 ∈ S and s2 6= 0
}

.

Proof. The case A = ∅ is trivial. Assume A 6= ∅. Let the set on the RHS of the last equation be Q.
Note that M is closed under products, and S is closed under sums and products both. Moreover,
S contains F as the constant polynomials. It is hence clear that Q is a subfield of K. Taking
denominator to be 1, we also see that S ⊆ Q, and thus Q contains F as well. Since A ⊆M ⊆ S, Q
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also contains A. Thus, F(A) ⊆ Q.

On the other hand, note that M ⊆ F(A) since A ⊆ F(A). Since F ⊆ F(A), we get S ⊆ F(A), so
that Q ⊆ F(A). (All these assertions follow from the relevant closure properties of F(A), a field).
Thus, Q = F(A).

Corollary 9.55. Let F ⊆ K be fields and let A ⊆ K be a set. If a ∈ F(A), then there exists a finite
set B ⊆ A, such that a ∈ F(B).

Proof. Let a ∈ F(A) and let M,S be as in Proposition 9.54. Then, a = s1/s2 for some s1, s2 ∈ S.
Then, both s1 and s2 are polynomials in finitely many ai ∈ A with coefficients in F. Let B be the
set of those finitely many ai. Then, a ∈ F(B).

Definition 9.56 (Ideal). A subset I of a ring R is called an ideal12 of R if

1. I is an additive subgroup of R, or equivalently, 0 ∈ I and a,b ∈ I =⇒ a− b ∈ I (Theo-
rem 1.24).

2. a ∈ I and r ∈ R =⇒ ra ∈ I and ar ∈ I.

Proposition 9.57. Let R be a commutative ring and let I be an ideal of R. Show that I 6= R ⇐⇒
1 /∈ I ⇐⇒ I does not contain any unit.

Proof. This follows trivially from the second condition and is left as an exercise.

Motivated by Proposition 9.57, we sometimes call R the unit ideal of R and any ideal I different
from R is called a non-unit ideal of R.

Corollary 9.58. If F is a field, then the only ideals of F are the trivial or zero ideal {0}, and F itself.

Proof. This follows directly from Proposition 9.57 since every non-zero element in a field is a unit.

Definition 9.59. Let R be a commutative ring. Given any a1, . . . ,an ∈ R, the set

〈a1, . . . ,an〉 :=
{
r1a1 + . . .+ rnan | r1, . . . , rn ∈ R

}
is an ideal of R called the ideal generated by a1, . . . ,an. More generally, if A ⊆ R, then the set of
all finite R-linear combinations of elements in A, defined as

〈A〉 :=
{
r1a1 + . . .+ rnan | r1, . . . , rn ∈ R,a1, . . . ,an ∈ A,n ∈N

}
12We sometimes call this a two-sided ideal since we require the set to be closed under both right multiplication and

left multiplication by elements in the ring. We may also define a right and left ideal, similarly.
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is an ideal of R called the ideal generated by A.13

Definition 9.60 (Principal Ideal). An ideal I of a commutative ring R is called a principal ideal of
R if it can be generated by a single element in R, i.e, I = 〈a〉 for some a ∈ R.

Example 9.61.

1. nZ is an ideal of Z for any n ∈ Z. For n = 1, we get the unit ideal and for n = 0, we get the
trivial or zero ideal. Moreover, nZ and −nZ are the same ideal for any n ∈ Z. Additionally,
one can prove that these are the only ideals of Z (Hint: Corollary 0.12). Note also that nZ is
the ideal generated by n. We hence conclude that all ideals of Z are principal.

2. Let F be a field. For any f(x) ∈ F[x], the set

〈f(x)〉 :=
{
f(x)g(x) | g(x) ∈ F[x]

}
is an ideal of F[x]. Are these the only ideals of F[x]? That is, if I is an ideal of F[x] then is
I = 〈f(x)〉 for some f(x) ∈ F[x]? The answer is again yes. In fact, the proof is also eerily
similar to the one for ideals of Z. This is not surprising since they both are a consequence of
the division algorithm, which holds true for both integers as well as polynomials. We again
leave the exact details of the proof as an exercise to the reader. If I was the zero ideal, then
taking f(x) to be the zero polynomial suffices. If I is a nonzero ideal, then one may consider
f(x) to be a nonzero polynomial in I such that deg f(x) is the least among the degrees of all
nonzero polynomials in I. One may then appeal to the division algorithm (Proposition 9.23)
to conclude that any polynomial h(x) will be a multiple of f(x). Thus, any ideal of F[x] is
principal, just like Z.

3. Consider the ring Z[x] and the ideal I = 〈2, x〉. We have

I =
{
2f(x) + xg(x) | f(x),g(x) ∈ Z[x]

}
We would like to show that the ideal I is not principal. Suppose I is principal and I = 〈f(x)〉
for some f(x) ∈ Z[x]. Since 2 ∈ I, we have 2 = f(x)g(x) for some g(x) ∈ Z[x]. Comparing
degrees, we get deg f(x) + degg(x) = 0, which tells us that f(x),g(x) are both non-zero
constant polynomials whose product is 2. We hence conclude that f(x) = ±1 or f(x) = ±2.
If f(x) = ±1, then I = Z[x], which is a contradiction since 1 /∈ I (since 2 is not a unit in
Z[x]) but 1 ∈ Z[x]. Thus, f(x) = ±2 and I is the ideal generated by 2 (which is the same
as the ideal generated by −2). Now, x ∈ I and hence x = 2h(x) for some h(x) ∈ Z[x]. On
comparing degrees, we conclude that h(x) must be a linear polynomial, of the form ax+ b
for some a,b ∈ Z. Comparing the leading coefficients, we get 2a = 1 which is not possible
since, again, 2 is not a unit in Z. Thus, I is not principal.

4. Consider the set

R =

{[
a 0

0 b

]
| a,b ∈ R

}

13Instead of (a1, . . . ,an) or (A), it is also common to denote these ideals as 〈a1, . . . ,an〉 or 〈A〉.
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R forms a commutative ring under the usual addition and multiplication of matrices. The
set

S =

{[
a 0

0 0

]
| a ∈ R

}
forms a ring and is a subset of R. However, it does not form a subring of R since the multi-
plicative identity of R (I2×2) is not present in the set S. The ring S has its own multiplicative
identity (put a = 1 in the definition above), which is different from the identity in R.
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§10. Ring Homomorphisms

Definition 10.1 (Ring Homomorphism). Let R and S be rings. A map ϕ : R → S is called a ring
homomorphism if

1. ϕ(a+ b) = ϕ(a) +ϕ(b) for all a,b ∈ R.

2. ϕ(ab) = ϕ(a)ϕ(b) for all a,b ∈ R.

3. ϕ(1) = 1.14

A field homomorphism is a ring homomorphism between fields.

Definition 10.2. Since any field homomorphism is injective (why?), we also call them embeddings.

Example 10.3.

1. Of course, for any ring R, the identity map of R is a ring homomorphism.

2. Let R be a commutative ring and let R′ be any overring of R, that is, R is a subring of R′. For
some α ∈ R′, we define the map πα : R[x]→ R′ as follows

πα
(
f(x)

)
= f(α) for all f(x) ∈ R[x].

We leave it as an easy exercise to the reader to show that πα is a homomorphism, called the
substitution homomorphism or the substitution map.

3. If R is a subring of R′, then the inclusion map ϕ : R→ R′ defined as

ϕ(a) = a for all a ∈ R

is a homomorphism.

4. Let R be a commutative ring and let Mn(R) be the ring of n× n matrices with entries in R.
For a fixed invertible matrix P ∈Mn(R), the map, ϕP : Mn(R)→Mn(R) defined by

ϕP(A) = PAP
−1

is a homomorphism.

Proposition 10.4. Let ϕ : R→ S be a ring homomorphism. Then,

1. ϕ(0) = 0.

2. ϕ(−r) = −ϕ(r) for all r ∈ R.

3. If r ∈ R× then s ∈ S× and ϕ(r−1) = (ϕ(r))−1.

14Note that a more suggestive way of writing this is ϕ(1R) = 1S. For brevity, we drop the subscript and 1 will be
assumed to be the multiplicative identity of the appropriate ring.
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4. The image of R under ϕ is a subring of S, where the image is defined as

imϕ :=
{
ϕ(r) | r ∈ R

}

Proof. We have
ϕ(0+ 0) = ϕ(0) +ϕ(0)

Since 0+ 0 = 0, we have
ϕ(0) +ϕ(0) = ϕ(0) =⇒ ϕ(0) = 0

For any a ∈ R, we have
ϕ(a− a) = 0 = ϕ(a) +ϕ(−a)

This gives us
ϕ(−a) = −ϕ(a)

Let r ∈ R×. Then, r−1 exists. We have

ϕ(r)ϕ(r−1) = ϕ(rr−1) = ϕ(1) = 1

from which, the third part clearly follows. The proof of the fourth part is left as an exercise and
follows directly from the first three parts.

Definition 10.5 (Kernel). Let ϕ : R → S be a ring homomorphism. The kernel of ϕ, denoted as
kerϕ is defined as

kerϕ :=
{
a ∈ R | ϕ(a) = 0

}
Note that the definition straightaway implies that 0 ∈ kerϕ. Moreover, we have the following.

Proposition 10.6. If ϕ : R→ S is a ring homomorphism, then kerϕ is an ideal of R.

Proof. Left as an exercise.

Definition 10.7 (Quotient Ring). Let R be a ring and let I be an ideal of R. Then, I is an additive
subgroup of R and the quotient group

R/I :=
{
r+ I | r ∈ R

}
is an abelian group with addition defined as

(a+ I) + (b+ I) := (a+ b) + I for all a,b ∈ R.

Moreover, R/I is a ring where multiplication is defined15 as

(a+ I)(b+ I) := ab+ I for all a,b ∈ R.

In fact, R/I is a ring with respect to addition and multiplication as defined above, with 1+ I as the
multiplicative identity in R/I.16 We call R/I the quotient ring of I in R.



§10 Ring Homomorphisms 81

Proposition 10.8. Let R be a ring and let I be an ideal of R. Let ϕ : R→ R/I be a map defined by

ϕ(r) = r+ I for all r ∈ R.

Then,

1. ϕ is a homomorphism,

2. kerϕ = I.

From Proposition 10.6 and Proposition 10.8, we see that any ideal is the kernel of some ring ho-
momorphism and that the kernel of any homomorphism is an ideal.

Definition 10.9 (Isomorphism). Let R,S be rings. A ring homomorphism ϕ : R → S is called an
isomorphism if ϕ is a bijection. In this case, R and S are said to be isomorphic and we denote this
as R ∼= S.

Exercise 10.10. Let R,S be rings and let ϕ : R→ S be an isomorphism. Then,

1. ϕ−1 is an isomorphism,

2. r ∈ R is a unit if and only if ϕ(r) is a unit in S,

3. r ∈ R is a zero divisor if and only if ϕ(r) is a zero divisor in S,

4. R is commutative if and only if S is commutative,

5. R is an integral domain if and only if S is an integral domain, and

6. R is a field if and only if S is a field.

Theorem 10.11 (Isomorphism Theorem for Rings). Let R,S be rings. If ϕ : R → S is a homomor-
phism, then imϕ ∼= R/ kerϕ.

Proof. Verify that the map r+ kerϕ 7→ ϕ(r) defines an isomorphism.

Definition 10.12 (Prime Ideal). Let R be a ring and let P be an ideal of R. P is called a prime ideal
of R if P 6= R and for all a,b ∈ R,

ab ∈ P =⇒ a ∈ P or b ∈ P

16One should check that this is indeed well-defined. That is, if a+ I = a′ + I and b+ I = b′ + I, then ab+ I = a′b′ + I.
16We leave it as an exercise to verify that R/I is indeed a ring.
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Definition 10.13 (Maximal Ideal). Let R be a ring and letM be an ideal of R. M is called a maximal
ideal of R if M 6= R and whenever J is an ideal of R such that M ⊆ J, we have either J = M or
J = R.

Example 10.14.

1. In the ring Z, the ideals 〈0〉 = {0} and pZ, where p is a prime, are prime ideals of Z, as is
proved trivially by Euclid’s Lemma (Corollary 0.17). In fact, these are the only prime ideals
of Z. Moreover, the ideals pZ are the only maximal ideals of Z.

2. Similarly, in the ring F[x] where F is a field, the only maximal ideals are ideals of the form
〈f(x)〉 where f(x) is irreducible in F[x]. Further, these ideals, together with the zero ideal,
are the only prime ideals of F[x]. In particular, F = C, we have two more versions of the
Fundamental Theorem of Algebra, as stated ahead,

Theorem 10.15 (Fundamental Theorem of Algebra - Version 6). The only maximal ideals in C[x]
are 〈x−α〉 where α ∈ C.

Theorem 10.16 (Fundamental Theorem of Algebra - Version 7). The only maximal ideals in R[x]
are of the form 〈x− a〉 or 〈x2 + bx+ c〉 where a,b, c ∈ R and b, c are such that b2 − 4c < 0.

Proposition 10.17. Let R be a commutative ring and let I be an ideal of R. Then,

1. I is a prime ideal if and only if R/I is an integral domain;

2. I is a maximal ideal if and only if R/I is a field.

Proof.

1. Suppose I is a prime ideal. Since I 6= R, R/I is not the trivial ring. Thus, 1 6= 0 in the ring
R/I. We now show that if the product of two cosets of I is equal to I (the additive identity
of the ring R/I), then at least one of them must be equal to I. For a,b ∈ R, if we have
(a+ I)(b+ I) = I, then ab+ I = I =⇒ ab ∈ I. Since I is a prime ideal, this means that either
a ∈ I or b ∈ I. Thus, either a+ I = I or b+ I = I, proving that R/I is an integral domain.
The converse is straightforward as well and is left as an exercise.

2. Suppose I is a maximal ideal of R. Then, I 6= R and thus 1 6= 0 in R/I. Now suppose that
a+ I is a non-zero element of R/I for some a ∈ R. Then, a /∈ I. Let J be the ideal generated
by a and I. We have

J =
{
ra+ u | r ∈ R and u ∈ I

}
We leave it as an exercise to show that J is indeed an ideal. Notice that J contains I (take r to
be 0). Moreover, J 6= I since a ∈ J and a /∈ I. Thus, by the maximality of I, we must have
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that J = R. In particular, we have that

1 = ba+ u for some b ∈ R and u ∈ I.

This implies that
(a+ I)(b+ I) = ab+ I = ba+ I = 1− u+ I

Since u ∈ I, we get that
(a+ I)(b+ I) = 1+ I

and hence, b+ I is a multiplicative inverse of a+ I in R/I. Hence, R/I is a field. We again
leave the converse as an exercise to the reader.

Corollary 10.18. Let R be a commutative ring and let I be an ideal of R. If I is maximal, then I is
prime.

Proof. This follows from Proposition 10.17 since every field is an integral domain.

Proposition 10.19. In a finite commutative ring, every prime ideal is maximal.

Proof. We leave the proof as an exercise. (Hint: Proposition 9.16 and Proposition 10.17)

Exercise 10.20. Let R be a commutative ring and let I be an ideal of R. Show that there is an
inclusion-preserving17 bijection between ideals of R containing I and the set of ideals of R/I, which
is given by J 7→ J/I :=

{
a+ I | a ∈ J

}
where J is an ideal of R containing I. Moreover, this corre-

spondence preserves primality and maximality.

Proposition 10.21. Let R be a ring and let I be an ideal of R such that I 6= R. Then, there exists a
maximal idealM of R such that I ⊆M.

Proof. Consider the set

F =
{
J | J is an ideal of Rwith J 6= R and I ⊆ J

}
.

F is clearly non-empty since I ∈ F . Further, suppose that {Iα}α∈Λ is a chain in F , that is, a subset
of F such that for any α,β ∈ Λ, either Iα ⊆ Iβ or Iβ ⊆ Iα. Now, we define

J :=
⋃
α∈Λ

Iα.

17Let ϕ be the bijection. By ‘inclusion-preserving’, we mean that if J1 and J2 are ideals containing I and if J1 ⊂ J2,
then ϕ(J1) ⊂ ϕ(J2).
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We claim that J is an ideal of R (the proof is left as an exercise) and I ⊆ J. Moreover, J 6= R, since
1 ∈ J =⇒ 1 ∈ Iα =⇒ Iα = R for some α ∈ Λ, which is a contradiction. Thus J ∈ F and clearly,
Iα ⊆ J for all α ∈ Λ. So, J is an upper bound in F on the chain {Iα}α∈Λ. Hence, by Zorn’s Lemma,
F has a maximal element with respect to inclusion, sayM. Clearly,M has the desired properties.

Proposition 10.22. Every subring of a field is an integral domain.

Proof. Left as an exercise.

Interestingly, the converse of Proposition 10.22 is also true.

Proposition 10.23. Every integral domain is a subring of some field.

The simplest way to prove Proposition 10.23 is to construct the so-called field of fractions of the
integral domain. This is similar to the construction of Q from Z.

§§10.1. Construction of Field of Fractions of an Integral Domain

For the remainder, we let R denote an integral domain and let S := R× R× = {(a,b) | a,b ∈ R,b 6=
0}

Definition 10.24. We define a relation ∼ on S as follows:

(a,b) ∼ (c,d) ⇐⇒ ad = bc.

Lemma 10.25. The relation ∼ on S is an equivalence relation.

Proof. Given any (a,b) ∈ S, we clearly have ab = ab =⇒ (a,b) ∼ (a,b). Hence ∼ is reflexive.

Suppose (a,b) ∼ (c,d). Then, ad = bc =⇒ cb = ad =⇒ (c,d) ∼ (a,b) and hence ∼ is symmetric.

Suppose (a,b) ∼ (c,d) and (c,d) ∼ (e, f). Then, ad = bc and cf = de. Now,

ad = bc =⇒ adf = bcf

=⇒ adf = bde

=⇒ af = be (since d 6= 0 and R is an integral domain)
=⇒ (a,b) ∼ (e, f)

Hence, ∼ is transitive.
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Definition 10.26 (Field of Fractions). The field of fractions of an integral domain R, denoted as
Frac(R), is the collection of equivalence classes of the relation ∼ on S. If (a,b) ∈ S, we denote the
equivalence class of (a,b) with respect to ∼ as a

b . Thus,

Frac(R) :=
{
a

b
| (a,b) ∈ S

}

We are yet to prove that the above construction is a field. First, we define the field operations on
this set and show that these are indeed well-defined.

Definition 10.27. We define addition and multiplication as follows. Given, ab , cd ∈ Frac(R)

a

b
+
c

d
:=
ad+ bc

bd
a

b
· c
d

:=
ac

bd

Proposition 10.28. Addition in Frac(R) is well-defined. That is, if (a,b) ∼ (a′,b′) and (c,d) ∼

(c′,d′), then
(ad+ bc,bd) ∼ (a′d′ + b′c′,b′d′).

Proposition 10.29. Multiplication in Frac(R) is well-defined. That is, if (a,b) ∼ (a′,b′) and (c,d) ∼
(c′,d′), then

(ac,bd) ∼ (a′c′,b′d′).

Theorem 10.30. The set Frac(R) along with addition and multiplication as defined above, forms a
field where

1. the additive identity is 0
1 ,

2. the additive inverse of ab is −a
b ,

3. the multiplicative identity is 1
1 , and

4. for a
b 6=

0
1 , the multiplicative inverse of ab is b

a .

We leave the proofs of the above results as an instructive exercise.

The map ϕ : R→ Frac(R) defined by

ϕ(a) =
a

1
for a ∈ R

is an injective homomorphism, which we refer to as the natural inclusion map. Thus, R ∼= imϕ,
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which is a subring of Frac(R). Thus, identifying R with imϕ, we may regard R to be a subring of
Frac(R), which is what we had wanted to show all along.

Theorem 10.31 (Universal Property). Let R be an integral domain and let R
ϕ
↪−→ Frac(R) be the

natural inclusion map. If F is a field such that there is an injective homomorphism R
ψ
↪−→ F, then

there exists an injective homomorphism Frac(R)
χ
↪−→ F such that ψ = χ ◦ϕ.

F

R Frac(R)ϕ

ψ
χ

Intuitively, the universal property states that if F is any field that contains R as a subring, then the
field F also contains Frac(R). Thus, Frac(R) is the smallest field containing R as a subring.

Proof. We define χ : Frac(R)→ F as

χ

(
a

b

)
:= ψ(a)ψ(b)−1 for a,b ∈ R,b 6= 0.

Since ψ is injective and F is a field, the above map is well-defined.18 It is also straightforward to
check that χ is a homomorphism. Now, it remains to show that χ is injective. We have

χ

(
a

b

)
= 0 =⇒ ψ(a)ψ(b)−1 = 0

=⇒ ψ(a) = 0 (since b 6= 0 and hence ψ(b)−1 6= 0)
=⇒ a = 0 (since ψ is injective)

=⇒ a

b
= 0.

Hence, kerχ is trivial and χ is indeed injective. Now, for any a ∈ R, we have

χ ◦ϕ(a) = χ
(
a

1

)
= ψ(a)ψ(1)−1 = ψ(a) =⇒ χ ◦ϕ = ψ.

Corollary 10.32. If F is any field such that there is an injective homomorphism R
ψ
↪−→ F satisfying

the universal property, then F and Frac(R) are isomorphic. Moreover, there exists an isomorphism
χ : Frac(R)→ F such that ψ = χ ◦ϕ.

Proof. Left as an exercise. This indicates that Frac(R) is unique up to isomorphism.

18One must also check that if ab = a′

b′ , then χ
(
a
b

)
= χ

(
a′

b′

)
.
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Definition 10.33. Let R be an integral domain. The field Frac(R[x]) is called the field of rational
functions with coefficients in R and is denoted as R(x).

The field of rational functions R(x) consists of elements of the form p(x)
q(x) where p(x),q(x) ∈ R[x]

and q(x) 6= 0.
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§11. Domains

For the remainder, we assume all rings to be commutative.

§§11.1. Euclidean Domains

Definition 11.1. Let R be an integral domain. Any function N : R → N with N(0) = 0 is called a
norm on R. If N(a) > 0 for a 6= 0, we call N a positive norm.

Observe that this definition of a norm is fairly weak, and hence any integral domain R possesses
several different norms.

Definition 11.2. An integral domain R is said to be a Euclidean domain (or possess a division
algorithm) if there is a normN on R such that for any two elements a,b ∈ Rwith b 6= 0, there exist
elements q, r ∈ R such that

a = qb+ rwith r = 0 or N(r) < N(b).

q is called the quotient and r is called the remainder of the division. Such a norm N is called a
Euclidean function.

In a Euclidean domain, we have the Euclidean algorithm, which allows us to write the following
by successive “divisions”.

a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

rn−2 = qnrn−1 + rn

rn−1 = qn+1rn

where rn is the last nonzero remainder. Such an rn exists sinceN(b) > N(r0) > N(r1) . . . > N(rn) is
a decreasing sequence of non-negative integers if the remainders are nonzero, and such a sequence
cannot continue indefinitely. Note that there is no guarantee that these elements are unique.

Example 11.3.

1. Fields are trivial examples of Euclidean domains, that satisfy the defining conditions with
any norm. This is because for all elements a,bwith b 6= 0, we have

a = qb+ 0

where q = ab−1.

2. The integers, Z, form a Euclidean domain with norm given byN(a) = a, the usual absolute
value, for all a ∈ Z. Of course, a division algorithm does exist for the integers, as we have
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seen before (Proposition 0.11). Note however that if a is not a multiple of b, we have two
possible pairs of quotient and remainder. For example, we have

5 = 2 · 2+ 1 and 5 = 3 · 2− 1.

If however we restrict the remainder to be non-negative, this factorisation is unique.

Definition 11.4. Let F be a field. A discrete valuation on F is a function ν : F× → Z satisfying the
following.

1. ν(ab) = ν(a) + ν(b), i.e, ν is a homomorphism from the multiplicative group of units of F

to the additive group Z.

2. ν is surjective.

3. ν(x+ y) ≥ min
{
ν(x),ν(y)

}
for all x,y ∈ F× with x+ y 6= 0.

Definition 11.5. Let ν be a discrete valuation on a field F. The set
{
x ∈ F× | ν(x) ≥ 0

}
∪ {0} forms

a subring of F called the valuation ring of ν.

Proposition 11.6. Let ν be a discrete valuation on a field F. Then,

1. ν(1) = 0, and

2. ν(b−1) = −ν(b) for all b ∈ F×.

Proof. We leave the proof as an exercise to the reader. These properties follow directly from the
definition.

Definition 11.7. An integral domain R is called a discrete valuation ring if there exists a discrete
valuation ν on Frac(R) such that R is the valuation ring of ν.

Proposition 11.8. A discrete valuation ring is a Euclidean domain.

Proof. Let R be a discrete valuation ring. We define the norm on R to be N(0) = 0 and N = ν on
non-zero elements of R. Now, for a,b ∈ Rwith b 6= 0, we have that

1. if N(a) < N(b), then a = 0b+ a, and

2. if N(a) ≥ N(b), then we have q = ab−1 ∈ R, since

ν(q) = ν(ab−1) = ν(a) − ν(b)

∴ ν(q) ≥ 0 =⇒ q ∈ R.
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We then have a = qb+ 0.

Proposition 11.9. Every ideal in a Euclidean domain is principal. More precisely, if I is a nonzero
ideal in a Euclidean domain R, then I = 〈d〉, where d is any nonzero element of I of minimum
norm.

Proof. If I is the zero ideal, we are done. Else, let d be an element of I of minimum norm. Such an
element exists since the set

{
N(a) | a ∈ I

}
has a minimum element by the well-ordering property

(Remark 0.4). Clearly, 〈d〉 ⊆ I since d is an element of I. Suppose a ∈ I. Since R is a Euclidean
domain applying the division algorithm allows us to write a = qd+ r with r = 0 or N(r) < N(d).
Then, r = a− qd. Since d ∈ I, we have qd ∈ I. Now, since a ∈ I and qd ∈ I, we have that r ∈ I.
By the minimality of norm of d, we must have r = 0, giving us a = qd =⇒ a ∈ 〈d〉. Hence,
I = 〈d〉.

Example 11.10. Let R = Z[x]. Since 〈2, x〉 is not a principal ideal of Z[x] (why?), it follows that
Z[x] is not a Euclidean domain.

Proposition 11.11. Let R be a commutative ring and let a,b ∈ R. If I = 〈a,b〉, then d is a gcd of a
and b if

1. I is contained in the principal ideal 〈d〉, and

2. if 〈d′〉 is any principal ideal containing I, then 〈d〉 ⊆ 〈d′〉.

Proposition 11.12. If a and b are nonzero elements of a commutative ring R such that the ideal
generated by a and b is a principal ideal 〈d〉, then d is a gcd of a and b.

Definition 11.13. An integral domain in which every ideal generated by two elements is principal
is called a Bézout domain.

Exercise 11.14. In a Bézout domain, every finitely generated ideal is principal.

Proposition 11.15. Let R be an integral domain. If for two elements d,d′ ∈ R, we have 〈d〉 = 〈d′〉,
then d′ = ud for some unit u. In particular, if d and d′ are both greatest common divisors of two
elements, then d′ = ud for some unit u.

Proof. The proof is trivial if either of d or d′ is zero, so we may assume that both d and d′ are non-
zero. Since d ∈ 〈d′〉, we have d = xd′ for some x ∈ R. Similarly, since d′ ∈ 〈d〉, we have d′ = yd

for some y ∈ R. Thus, d = xyd and d(1− xy) = 0. Since d 6= 0 and R is an integral domain, it
follows that xy = 1. That is, both x and y are units in R. This proves the first part. The second
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part follows trivially since any two greatest common divisors of two elements generate the same
principal ideal.

Theorem 11.16. Let R be an integral domain and let a and b be two non-zero elements of R. Let
d = rn be the last non-zero remainder in the Euclidean algorithm for a and b. Then,

1. d is a greatest common divisor of a and b, and

2. the principal ideal 〈d〉 is the ideal generated by a and b. In particular, d can be written as an
R-linear combination of a and b, that is, there exist elements x,y ∈ R such that

d = ax+ by.

One we may regard the last statement of the above theorem as an extension of Bézout’s Lemma.

Proof. Since the ideal generated by a and b is principal, a and b do have a gcd, namely, any
element which generates the principal ideal 〈a,b〉. Both parts of the theorem follow once we
show that d = rn generates the said ideal. To do so, we will show that

1. d | a and d | b, so that 〈a,b〉 ⊆ 〈d〉, and

2. d is an R-linear combination of a and b, so that 〈d〉 ⊆ 〈a,b〉.

It is easy to show via induction that d indeed divides a and b (keep track of the divisibilities in the
Euclidean algorithm). To prove the second part, we may again proceed inductively to show that
rn ∈ 〈a,b〉. More specifically, we have that r0 ∈ 〈a,b〉. Assuming rk−1, rk ∈ 〈a,b〉, we have

rk+1 = rk−1 − qk+1rk ∈ 〈rk−1, rk〉 ⊆ 〈a,b〉.

Hence, by induction, rn ∈ 〈a,b〉, which completes the proof.

Aside. The above discussion gives an interesting perspective on the existence of a solution
in the integers to the first-order Diophantine equation, given by

ax+ by = N

where a,b,N ∈ Z. Observe that the existence of a solution (x,y) to the above equation is just
another way of saying that N ∈ 〈a,b〉. By the above theorem, this is the same as saying that
N ∈ 〈d〉 where d = gcd(a,b). Hence, the equation ax+ by = N is solvable in integers x and
y if and only if N is divisible by gcd(a,b). Moreover, let (x0,y0) be a solution of the above
equation. Then, the complete set of solutions to the equation is given by

x = x0 +m ·
a

gcd(a,b)

y = y0 −m ·
b

gcd(a,b)

wherem varies over Z.
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We end this discussion with another useful notion that is sometimes used to prove that a given
integral domain is not a Euclidean domain. For any integral domain R, we define R̃ := R× ∪ {0}.

Definition 11.17. Let R be an integral domain. An element u ∈ R \ R̃ is called a universal side
divisor if for every x ∈ R, there is some z ∈ R̃ such that u divides x− z. That is, every x ∈ R can be
written as x = qu+ zwhere z is either zero or a unit.

Proposition 11.18. Let R be an integral domain that is not a field. If R is a Euclidean domain, then
there are universal side divisors in R.

Proof. Suppose R is a Euclidean domain with some norm N, and let u be an element of R \ R̃ (this
is nonempty since R is not a field) of minimal norm. For any x ∈ R, write x = qu+ r, where either
r = 0, or N(r) < N(u). In either case, the minimality of N(u) implies that r ∈ R̃. Hence, u is a
universal side divisor of R.

§§11.2. Principal Ideal Domains

Definition 11.19. A principal ideal domain (PID) is an integral domain in which every ideal is
principal.

An immediate consequence of the above definition is the following.

Corollary 11.20. Every Euclidean domain is a principal ideal domain.

Example 11.21.

1. We have seen in Example 9.61, that Z is a principal ideal domain.

2. Example 11.10 tells us that Z[x] is not a principal ideal domain.

Proposition 11.22. Every nonzero prime ideal in a principal ideal domain is a maximal ideal.

Proof. Let 〈p〉 be a prime ideal in a principal ideal domain R, and let I = 〈m〉 be an ideal containing
〈p〉. We must show that I = 〈p〉 or I = R. Since p ∈ 〈m〉, we must have p = rm for some r ∈ R.
Since 〈p〉 is a prime ideal and rm ∈ 〈p〉, we must have r ∈ 〈p〉 or m ∈ 〈p〉. If m ∈ 〈p〉, then
〈p〉 = 〈m〉 = I, and we are done. Suppose otherwise that r ∈ 〈p〉. Then, r = ps for some s ∈ R.
Now, we have rm = psm = p and hence sm = 1, since R is an integral domain. Thus, m is a unit
and hence I = R.

Corollary 11.23. If the polynomial ring R[x] is a principal ideal domain, then R is a field.
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Proof. Assume that R[x] is a principal ideal domain. Since R is a subring of R[x], R is an integral
domain. Define ψ : R[x]→ R by

ψ
(
f(x)

)
= f(0) for all f(x) ∈ R[x].

We leave it as an exercise to verify that ψ is a homomorphism. By the Isomorphism Theorem for
Rings, R[x]/ kerψ is isomorphic to R. We may show that kerψ = 〈x〉 and hence, R[x]/〈x〉 ∼= R.
Thus, R[x]/〈x〉 is an integral domain. By Proposition 10.17, 〈x〉 is a non-zero prime ideal. By
Proposition 11.22, 〈x〉 is also maximal. Again, Proposition 10.17 tells us that R[x]/〈x〉 is a field,
and hence R is a field.

Definition 11.24. A norm N on an integral domain R is called a Dedekind-Hasse norm if N is a
positive norm, and for every non-zero a,b ∈ R, either a ∈ 〈b〉, or there is a nonzero element in
〈a,b〉 with norm strictly lesser than N(b). That is, either b divides a in R, or there exist s, t ∈ R
with 0 < N(sa− tb) < N(b).

Notice that the R is a Euclidean domain with respect to a positive normN if it is always possible to
satisfy the Dedekind-Hasse condition with s = 1. Thus, the Dedekind-Hasse condition is a weak-
ening of the Euclidean condition, and we may think of a Dedekind-Hasse norm as a generalisation
of a Euclidean function.

Proposition 11.25. An integral domain R is a principal ideal domain if and only if R has a
Dedekind-Hasse norm.

Proof. Let I be a nonzero ideal in R and let b be a nonzero element of I, chosen such that N(b) is
minimal (again, such a b exists by the Well-Ordering Property). Suppose a is a nonzero element
in I, so that 〈a,b〉 ⊆ I. LetN be a Dedekind-Hasse norm on R. We must have that either b divides
a, or that there exist s, t ∈ R such that 0 < N(sa− tb) < N(b). SinceN(b) is minimal, we conclude
that a ∈ 〈b〉. Thus, I is principal and R is a principal ideal domain. We shall prove the converse in
a later section.

§§11.3. Unique Factorisation Domains

So far, we have computed the gcd of two elements algorithmically. However, Proposition 0.22
shows us that for elements in Z, we may calculate the gcd of two numbers using their prime
factorisations. This idea generalises to a large class of rings, as we now show. We first recall the
definition of an irreducible element. We restrict ourselves to integral domains for the following
discussion.

Definition 11.26. Let R be an integral domain. An element f ∈ R is said to be irreducible if f is
non-zero, non-unit in R, and whenever f = gh for some g,h ∈ R, at least one of g and h is a unit.

Definition 11.27. Let R be an integral domain. An element p ∈ R is said to be prime if p is non-
zero, and the ideal 〈p〉 is a prime ideal. In other words, a non-zero element p is a prime if it is not
a unit, and whenever p | ab for a,b ∈ R, then either p | a or p | b.
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Definition 11.28. Let R be an integral domain. Two elements a,b ∈ R are said to be associate if
a = ub for some unit u ∈ R×.

Proposition 11.29. In an integral domain, every prime element is irreducible.

Proof. Let p be a prime, so that 〈p〉 is a nonzero prime ideal. Suppose p = ab for some a,b ∈ R, so
that ab = p ∈ 〈p〉. Since 〈p〉 is a prime ideal, one of a or bmust be in 〈p〉. Assume without loss of
generality that a ∈ 〈p〉, so that a = pr for some r ∈ R. Now, p = ab = prb =⇒ rb = 1. Thus, b is
a unit and p is irreducible.

Proposition 11.30. In a principal ideal domain, an element is prime iff it is irreducible.

Proof. Proposition 11.29 already shows us that prime implies irreducible. Hence it suffices to show
that in a principal ideal domain, an irreducible element is prime. Let M be any ideal containing
〈p〉. Since R is a principal ideal domain, M = 〈m〉 for some m ∈ R. Since p ∈ 〈m〉, p = rm for
some r ∈ R. Now, since p is irreducible, one of r or m must be a unit. Thus, either 〈p〉 = 〈m〉 or
〈m〉 = R. Thus, the only ideals containing 〈p〉 are 〈p〉 itself, and R. Hence, 〈p〉 is maximal ideal.
By Corollary 10.18, 〈p〉 is a prime ideal, and hence p is prime.

Definition 11.31. A unique factorisation domain (UFD) is an integral domain R in which every
non-zero, non-unit element r ∈ R has the following properties.

1. r can be written as a finite product of irreducibles (not necessarily distinct): r = p1 · · · pn.

2. The decomposition is above is unique up to associates. That is, if r = q1 · · ·qm is another
factorisation of r into irreducibles, then n = m, and there is some permutation σ such that
pi is associate to σ(qi) for i = 1, . . . ,n.

As a trivial example, observe that any field is vacuously a unique factorisation domain since there
are no non-zero non-unit elements.

Proposition 11.32. In a unique factorisation domain, an element is prime iff it is irreducible.

Proof. As before, Proposition 11.29 already shows us that prime implies irreducible. We now show
that in a unique factorisation domain, an irreducible element is prime. Let p be an irreducible
element and suppose p | ab for some a,b ∈ R. Thus, ab = pc for some c ∈ R. Writing a,b, c as
their irreducible decompositions, and from the uniqueness of this decomposition, we see that p
must be associate to one of the irreducibles on the LHS. Without loss of generality, assume that p
is associate to one of the irreducibles in the decomposition of a, so that a = (up)p2 · · · pn for some
unit u ∈ R× and some (possibly empty) set of irreducibles p2, . . . ,pn. Thus, p | a since a = pd

with d = up2 · · · pn. This completes the proof.
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We may now use the terms prime and irreducible interchangeably. This allows us to talk about
‘prime factorisations’, which is just the decomposition of nonzero elements into irreducibles or
primes.

Proposition 11.33. Let a and b be two nonzero elements of a unique factorisation domain R and
suppose

a = upe11 · · · p
en
n

b = vpf11 · · · p
fn
n

where u and v are units, the primes p1, . . . ,pn are distinct, and the exponents ei and fi are non-
negative. Then, the element

d = p
min(e1,f1)
1 · · · pmin(en,fn)

n

is a gcd of a and b.

Proof. Since the exponents of each of the primes occurring in d are no larger than the exponents
occurring in the prime factorisations of a and b, it follows that d is a common divisor of a and b.
We leave it as an exercise to show that if c is a common divisor of a and b, then c | d.

Theorem 11.34. Every principal ideal domain is a unique factorisation domain.

Proof. Let R be a principal ideal domain and let r ∈ R be non-zero and non-unit. We must show
that r can be written as a finite product of irreducibles in R, and that this decomposition is unique
up to units. We first prove that such a decomposition indeed exists.

If r is itself reducible, then we are done. If not, then r = r1r2 where r1, r2 are both non-unit. If both
these elements are irreducible then again we are done. If not, at least one element, say r1, can be
written as a product of two non-unit elements, r1 = r11r12, and so forth. We must verify that this
process terminates, that is, we must necessarily reach a point where all factors of r are irreducible.
If this is not the case, we obtain an infinite ascending chain of ideals, as follows.

〈r〉 ⊂ 〈r1〉 ⊂ 〈r11〉 ⊂ . . . ⊂ R

where all inclusions are proper. Moreover, such an infinite chain exists thanks to the Axiom of
Choice. We now show that such an ascending chain of ideals I1 ⊆ I2 ⊆ . . . ⊆ R eventually
becomes stationary. That is, there is some positive integer n such that Ik = In for all k ≥ n. This
means that it is not possible to have an infinite ascending chain of ideals where all containments
are proper. Let I := ∪∞i=1Ii. It is easy to show that I is an ideal of R. Since R is a principal ideal
domain, I = 〈a〉 for some a ∈ R. Since a ∈ I, we must have a ∈ In for some n. We then have
In ⊆ I = 〈a〉 ⊆ In, so that I = In and the chain becomes stationary at In. This proves that every
non-zero, non-unit element in R has a finite decomposition into irreducibles.

We now show that this decomposition is unique up to units. We induct on the number, n, of
irreducible factors in some factorisation of the element r ∈ R. If n = 0, then r is a unit and the
factorisation is trivially unique since if r = qc for some irreducible q, then q divides a unit, which
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is a contradiction. Suppose now that n ≥ 1 and we have that

r = p1 · · · pn = q1 · · ·qm m ≥ n

where pi and qj are (not necessarily distinct) irreducibles. Since p1 divides the product on the
right, it must divide one of the factors. Without loss of generality, suppose p1 divides q1 so that
q1 = p1u for some u ∈ R. Since q1 is irreducible, u is a unit and thus p1 and q1 are associates.
Since we are operating in an integral domain, we may ‘cancel’ p1 to get

p2 · · · pn = uq2 · · ·qm = q′2 · · ·qm m ≥ n

where q′2 = uq2 is also irreducible. By induction on n, we may conclude that up to associates,
each factor on the left matches bijectively with factor on the right. Since we have already shown
that p1 and q1 are associates, we are done.

Corollary 11.35. Every Euclidean domain is a unique factorisation domain.

Proof. This follows straight from Theorem 11.34 and Corollary 11.20.

Corollary 11.36 (Fundamental Theorem of Arithmetic). The integers Z form a unique factorisation
domain.

Proof. This is trivial since Z is a Euclidean domain.

Proposition 11.37. Let R be a principal ideal domain. Then, there exists a multiplicative Dedekind-
Hasse norm on R.

Proof. If R is a principal ideal domain, then R is a unique factorisation domain. Define the norm
N by setting N(0) = 0, N(u) = 1 if u is a unit, and N(a) = 2n if a = p1 · · · pn where pi’s are irre-
ducibles in R. This is well-defined since the number of irreducible factors of a is unique. Clearly,
N(ab) = N(a)N(b), so that N is positive and multiplicative. Suppose a,b are nonzero elements
in R. Since R is a principal ideal domain, we have 〈a,b〉 = 〈r〉 for some r ∈ R. If b divides a in R
then we are done. If b does not divide a, that is, a /∈ 〈b〉, and hence r /∈ 〈b〉. However, b = xr for
some x ∈ R, and thus x is not a unit in R. We then have that N(b) = N(x)N(r) > N(r), proving
that there is an element in 〈a,b〉with norm strictly smaller thanN(b). Hence,N is a multiplicative
Dedekind-Hasse norm on R.



§12 Polynomial Rings 97

§12. Polynomial Rings

§§12.1. Definitions

For this section, whenever we talk about rings, we assume commutative rings. Recall that the
polynomial ring R[x] in the indeterminate x with coefficients in the ring R is defined as the set of
all formal sums anxn + . . . a0 with n ≥ 0 and each ai ∈ R. If an 6= 0, then anxn is the leading
term, an is the leading coefficient, and the degree of the polynomial is n. We define the leading
coefficient of the zero polynomial as zero. If an = 1, we call the polynomial monic. With addition
and multiplication of polynomials defined the usual way, R[x] is a commutative ring that borrows
its identity from R itself. Moreover, we identify R with the subring of constant polynomials. We
now state, without proof, a proposition that summarises a bunch of results from Section 9.2.

Proposition 12.1. Let R be an integral domain. Then,

1. deg(p(x)q(x)) = degp(x) + degq(x) for all p(x),q(x) ∈ R[x],

2. the units of R[x] are just the units of R, and

3. R[x] is an integral domain.

Recall also that if R is an integral domain, then we denote by R(x), the field of fractions of R[x] (the
field of rational functions in x with coefficients in R), which consists of all quotients of the form
p(x)
q(x) where p(x),q(x) ∈ R[x] and q(x) is non-zero.

Proposition 12.2. Let I be an ideal of the ring R and let 〈I〉 = I[x] denote the ideal of R[x] generated
by I (the set of polynomials with coefficients in I). Then,

R[x]/〈I〉 ∼= (R/I)[x].

In particular, if I is a prime ideal of R, then 〈I〉 is a prime ideal of R[x].

Proof. We have a natural map ϕ : R[x] → (R/I)[x] obtained by reducing each coefficient of a poly-
nomial in R[x] modulo I. Moreover, ϕ is a ring homomorphism. Observe that kerϕ = I[x] = 〈I〉
and thus, R[x]/〈I〉 ∼= (R/I)[x] by Theorem 10.11, proving the first part. If I is a prime ideal of R,
then R/I is an integral domain by Proposition 10.17, and hence, by Proposition 12.1, (R/I)[x] is
an integral domain. Once again, by Proposition 10.17, we conclude that 〈I〉 is a prime ideal of
R[x].

Definition 12.3. The polynomial ring in variables x1, . . . , xn with coefficients in R, denoted as
R[x1, . . . , xn] is defined inductively as

R[x1, . . . , xn] := R[x1, . . . , xn−1][xn].

A more concrete formulation of this idea is as follows.
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Definition 12.4. A polynomial in n variables x1, . . . , xn with coefficients in a commutative ring R
is an expression of the form ∑

ad1,...,dn x
d1
1 · · · x

dn
n

where the summation is over a finite set of n-tuples (d1, . . . ,dn) in Nn where ad1,...,dn ∈ R for
every such n-tuple.

Definition 12.5. Let R be a commutative ring and let Λ be a finite subset of Nn. Let f(x1, . . . , xn)
be a polynomial in x1, . . . , xn of the form

f(x1, . . . , xn) =
∑

(d1,...,dn)∈Λ
ad1,...,dn x

d1
1 · · · x

dn
n .

Then,
ad1,...,dn x

d1
1 · · · x

dn
n

is called a term of the polynomial f(x1, . . . , xn) provided ad1,...,dn 6= 0. Moreover, di is called the
degree of xi in the above term, and d := d1 + . . .+ dn is called the degree of this term. We call the
n-tuple (d1, . . . ,dn) the multidegree of the term.

For brevity, we represent a polynomial in n variables, f(x1, . . . , xn) as simply f.

Two polynomials are equal if and only if they have the same terms. The zero polynomial is defined
as the polynomial having no terms. Since any non-zero polynomial must have at least one term,
we can define the degree of such polynomials as follows.

Definition 12.6. Let f be a non-zero polynomial in x1, . . . , xn. The degree or total degree of f is
defined as

deg f := max
{
d1 + . . .+ dn | (d1, . . . ,dn) ∈ Λ and ad1,...,dn 6= 0

}
.

As in the case of single variable polynomials, we define the degree of the zero polynomial as −∞.

Definition 12.7. Let f be a non-zero polynomial in x1, . . . , xn. If every term of the polynomial has
the same degree d, then f is said to be a homogeneous polynomial of degree d.

Definition 12.8. A polynomial that has a single term with coefficient 1, of the form xi11 · · · xinn is
called a monomial.

With this, we may think of a polynomial as a finite R-linear combination of monomials. That is, a
finite linear combination of monomials with coefficients in the commutative ring R.

Definition 12.9. Let f be a non-zero polynomial in x1, . . . , xn. The sum of all monomial terms in f
of degree k is called the homogeneous component of degree k in f.
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If f is a nonzero polynomial having degree d, then we may write f uniquely as f0 + . . . fd where fk
is the homogeneous component of degree k in f, for 0 ≤ k ≤ d.

§§12.2. Polynomial Rings over Fields

We now consider the special case when the coefficient ring is itself a field, say F. We define a norm
N on F[x] with N(p(x)) = degp(x) and N(0) = 0. Recall from Proposition 9.23 that the division
algorithm holds. We restate this proposition for sake of completeness.

Proposition 12.10 (Division Algorithm). Let F be a field and let f(x),g(x) ∈ F[x] with g(x) 6= 0.
Then, there are unique polynomials q(x), r(x) ∈ F[x] such that

f(x) = g(x)q(x) + r(x)

with r(x) = 0 or deg r(x) < degg(x).

Notice that deg r(x) = N(r(x)) and degg(x) = N(g(x)). Thus, the above proposition states that
F[x] is a Euclidean domain. An immediate corollary is the following.

Corollary 12.11. If F is a field, then F[x] is a principal ideal domain and a unique factorisation
domain.

Proof. This is immediate since every Euclidean domain is a principal ideal domain and every
principal ideal domain is a unique factorisation domain.

Proposition 12.12 (Gauss’ Lemma). Let R be a unique factorisation domain and let F be its field
of fractions. If p(x) ∈ R[x] is reducible in F[x], then p(x) is reducible in R[x]. More precisely, if
p(x) = A(x)B(x) for some non-constant polynomials A(x),B(x) ∈ F[x], then there exist nonzero
elements r, s ∈ F such that a(x) := rA(x) and b(x) := sB(x) both lie in R[x] and p(x) = a(x)b(x) is
a factorisation in R[x].

Proof. The coefficients of polynomials A(x),B(x) are elements of F and hence quotients of ele-
ments in R. Multiplying throughout by a common denominator, we get dp(x) = a′(x)b′(x), where
a′(x),b′(x) ∈ R[x], and d is a nonzero element of R. If d is a unit in R, then the proposition holds
with a(x) = d−1a′(x) and b(x) = b′(x). If not, we can write d as a product of irreducibles in R
(since R is a unique factorisation domain), say d = p1 · · · pn. Since p1 is irreducible and R is a
unique factorisation domain, p1 is also prime by Proposition 11.32. Hence, the ideal 〈p1〉 is prime.
Now, by Proposition 12.2, p1R[x] is a prime ideal of R[x] and (R/p1R)[x] is an integral domain.
Reducing the equation dp(x) = a(x)b(x) modulo p1, we obtain 0 = a′(x)b′(x), where the bar indi-
cates the images of these polynomials in the quotient ring. Since (R/p1R)[x] is an integral domain,
one of the factors, say a′(x) must be zero. This means that all coefficients of a′(x) are divisible
by p1, so that 1

p1
a′(x) ∈ R[x]. Thus, from the equation dp(x) = a(x)b(x), we can cancel a factor

of p1 from both sides while still having an equation in R[x]. Proceeding the same way with all
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remaining factors of d, we obtain p(x) = a(x)b(x) as a factorisation in R[x] with a(x),b(x) being
F-multiples of A(x),B(x) respectively.

Corollary 12.13. Let R be a unique factorisation domain, let F be its field of fractions, and let
p(x) ∈ R[x]. If the greatest common divisor of coefficients of p(x) is 1, then p(x) is irreducible in
R[x] if and only if p(x) is irreducible in F[x]. In particular, if p(x) is a monic polynomial that is
irreducible in R[x], then p(x) is irreducible in F[x].

Proof. By Gauss’ Lemma (Proposition 12.12), if p(x) is reducible in F[x], then it is irreducible in
R[x]. Conversely, since the greatest common divisor of coefficients of p(x) is 1, we have that if p(x)
is reducible in R[x], then p(x) = a(x)b(x) where a(x),b(x) ∈ R[x] are both non-constant. This same
factorisation also shows that p(x) is reducible in F[x], completing the proof.

Theorem 12.14. R is a unique factorisation domain if and only if R[x] is a unique factorisation
domain.

Proof. If R[x] is a unique factorisation domain, then R is trivially a unique factorisation domain
(since the factorisation of any element of R in R[x] must be a factorisation in R itself, due to degree
considerations). Suppose conversely that R is a unique factorisation domain and let F be its field
of fractions. Let p(x) be a nonzero polynomial in R[x]. Let d be the greatest common divisor of the
coefficients of p(x), so that p(x) = dp′(x) where the greatest common divisor of coefficients of p′(x)
is 1. Notice that d is unique up to units in R (which are also units in R[x]) and d can be factored into
irreducibles in R (which are also irreducibles in R[x]). It suffices to show that p′(x) can be uniquely
(up to units) factored into irreducibles in R[x]. We may hence assume that the greatest common
divisor of coefficients of p(x) is 1 and that p(x) is not a unit in R[x], that is, degp(x) > 0. By
Corollary 12.11, F[x] is a unique factorisation domain, and hence p(x) can be factored uniquely as a
finite product of irreducibles in F[x]. Using Gauss’ Lemma (Proposition 12.12) and Corollary 12.13,
we can show that p(x) can be written as a finite product of irreducibles in R[x]. We leave the proof
of uniqueness as an exercise to the reader. It follows from the uniqueness of decomposition in
F[x].

§§12.3. Irreducibility Criteria

Proposition 12.15. Let F be a field and let p(x) ∈ F[x]. Then p(x) has a factor of degree one if and
only if p(x) has a root in F, that is, there is an α ∈ F with p(α) = 0.

Proof. Since F is a field, if p(x) has a factor of degree one, we may assume it to be monic, i.e, of the
form (x− α) for some α ∈ F. Then clearly p(α) = 0. Conversely, suppose that p(α) = 0 for some
α ∈ F. By the division algorithm in F[x] (Proposition 9.23), we may write

p(x) = q(x)(x−α) + r

where r is a constant (since deg r < deg(x− α)). Since p(α) = 0, r must be zero, and hence p(x)
has (x−α) as a factor.
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Proposition 12.16. A polynomial of degree two or three over a field F is reducible in F[x] if and
only if it has a root in F.

Proof. We leave this as an exercise.

Proposition 12.17 (Rational Root Theorem). Let p(x) = anxn + . . .+ a0 be a polynomial of degree
n in Z[x]. If r

s ∈ Q is in lowest terms (i.e, gcd(r, s) = 1), and r
s is a root of p(x), then r | a0 and

s | an.

Proof. We have

p

(
r

s

)
= an

(
r

s

)n
+ . . .+ a0 = 0 =⇒ anr

n + an−1r
n−1s+ . . .+ a0s

n = 0

Thus, we have anrn = s(−an−1r
n−1 − . . .− a0s

n−1) so that s | anrn. Since gcd(r, s) = 1, it follows
that s | an. The proof for r | a0 follows along similar lines.

Corollary 12.18. Let p(x) ∈ Z[x] be monic. If p(d) 6= 0 for all integers d dividing the constant term
of p(x), then p(x) has no root in Q.

Proof. This follows trivially from Proposition 12.17.

Proposition 12.19. Let I be a proper ideal19 in the integral domain R. Let p(x) be a non-constant
monic polynomial in R[x]. If the image of p(x) in (R/I)[x] cannot be factored in (R/I)[x] into two
polynomials of smaller degree, then p(x) is irreducible in R[x].

Proof. Suppose that p(x) cannot be factored in (R/I)[x] but is reducible in R[x]. Then, there exist
non-constant polynomials a(x),b(x) ∈ R[x] such that p(x) = a(x)b(x). Moreover, a(x),b(x) are
both monic since p(x) is monic. By Proposition 12.2, reducing the coefficients modulo I gives us a
non-constant factorisation in (R/I)[x], which is a contradiction.

Proposition 12.20 (Eisenstein-Schönemann Criterion). Let P be a prime ideal of the integral do-
main R. Let f(x) = xn + an−1x

n−1 + . . .+ a0 be a polynomial in R[x] (n ≥ 1). If an−1, . . . ,a0 ∈ P
and a0 /∈ P2, then f(x) is irreducible in R[x].

Proof. Suppose f(x) were reducible in R[x], say f(x) = a(x)b(x) where a(x),b(x) ∈ R[x] are non-
constant polynomials. Reducing this equation modulo P, we obtain xn = a(x)b(x) in (R/P)[x],
where the bar indicates polynomials whose coefficients are reduced modulo P. Since P is a prime

19That is, I is an ideal of R and I 6= R.
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ideal, R/P is an integral domain, it follows that the constant terms of both a(x) and b(x) are 0,
that is, the constant terms of both a(x) and b(x) are elements of P. However, this implies that the
constant term a0 of f(x) is an element of P2, which is a contradiction.

Proposition 12.20 is most frequently used in the case of Z[x], so we state this result explicitly as a
corollary.

Corollary 12.21 (Eisenstein-Schönemann Criterion for Integers). Let p be a prime in Z and let
f(x) = xn+an−1x

n−1+ . . .+a0 be a polynomial in Z[x], withn ≥ 1. If p | ai for all i ∈ {0, . . . ,n−1}
but p2 - a0, then f(x) is irreducible in both Z[x] and Q[x].

Proof. Trivial.
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§13. Algebraic Extensions

§§13.1. The Prime Subfield

Definition 13.1. A number field is a subfield of C.

Proposition 13.2. Any number field contains the field Q.

Proof. We leave this as a simple exercise to the reader.

Definition 13.3. The characteristic of a field F is the smallest positive integer p such that p · 1 = 0
if such a p exists, and is defined to be 0 otherwise. Here, p · 1 is defined as

p · 1 := 1+ · · ·+ 1︸ ︷︷ ︸
p times

.

We denote the characteristic of F as ch(F).

Proposition 13.4. Let F be a field. Then, the following are true.

1. ch(F) is either 0 or a prime.

2. If ch(F) = p, a prime and if n · 1 = 0 for some n ∈ Z20, then p | n.

3. If ch(F) = p, a prime, then for any α ∈ F,

p · α = α+ · · ·+α︸ ︷︷ ︸
p times

= 0.

4. If ch(F) = p, a prime, then for any x,y ∈ F,

(x+ y)p = xp + yp.

Proof.

1. Observe that
m · 1+n · 1 = (m+n) · 1 and

(m · 1)(n · 1) = (mn) · 1

for m,n ∈ N+. It follows that ch(F) is either 0 or prime. Suppose that ch(F) is some
composite number n = ab (a,b ∈ N+ and a,b < n). We then have n · 1 = 0 =⇒ (ab) · 1 =
0 =⇒ (a · 1)(b · 1) = 0. Since F is a field, it follows that one of a · 1 or b · 1 must be zero,
which is a contradiction since a,b < n.

20We define (−n) · 1 := −(n · 1) for positive n, and define 0 · 1 := 0.
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2. This follows trivially from the first part itself, along with an elementary application of the
Division Algorithm.

3. This is trivial as well, since p · α = p · (1α) = (p · 1)α = 0.

4. This is again trivial and follows from the the third part. (Hint: Binomial Theorem)

Corollary 13.5. Let F be a field of characteristic p > 0. Then, for any a1, . . . ,an ∈ F, we have

(a1 + · · ·+ an)p = ap1 + · · ·+ a
p
n.

Proof. Apply induction on part 4 of Proposition 13.4.

Definition 13.6. Let F be a field. The prime subfield of F is the subfield of F generated by the
multiplicative identity, 1 ∈ F.

Proposition 13.7. Let F be a field. If ch(F) = 0, then the prime subfield of F is isomorphic to Q. If
ch(F) = p for some prime p, then the prime subfield of F is isomorphic to Zp =: Fp.

Proof. We have the natural ring homomorphism ϕ : Z→ F defined by

ϕ(n) = n · 1.

Note that kerϕ = (ch(F)Z. Depending on the characteristic, quotienting by the kernel gives us
an injection of either Z or Zp into F. Since F is a field, the Universal Property tells us that F

must either contain an isomorphic copy of Q, the field of fractions of Z (when ch(F) = 0), or an
isomorphic copy of Fp := Zp, the field of fractions of Zp (when ch(F) = p).

§§13.2. Extensions and Degrees

Definition 13.8. Let F be a subfield of K. We say that K is an extension field of F and we call F

the base field. We denote this as K/F.

Remark 13.9. Note that K/F is not a quotient. In fact, since the only ideals of K are 0 and K,
quotienting does not make sense in the first place.

Definition 13.10. Let K/F be a field extension. We may regard K as a vector space over F. We
denote dimF K as [K : F] and call it the degree of the field extension K/F.
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Definition 13.11. A field extension K/F is said to be a finite extension if [K : F] is finite.

Definition 13.12. A field extension K/F is said to be a simple extension if there exists α ∈ K such
that K = F(α).

Definition 13.13. Let K/F be a field extension and let α ∈ K. α is said to be algebraic over F if
there exists a non-zero polynomial f(x) ∈ F[x] such that f(α) = 0.

α is called transcendental over F if it is not algebraic over F.

If every element of K is algebraic over F, then K/F is called an algebraic extension.

Proposition 13.14. Let F ⊆ E ⊆ K be fields and let α ∈ K. If α is algebraic over F, then α is
algebraic over E.

Proof. We leave this as an exercise to the reader.

Corollary 13.15. Let F ⊆ E ⊆ K be fields. If K/F is algebraic, then so are K/E and E/F.

Proposition 13.16. Every finite extension is an algebraic extension.

Proof. Let K/F be a finite extension and let n := dimF K. Let a ∈ K be an arbitrary element.
We show that α is algebraic over F. Since the set {1,α, . . . ,αn} has n+ 1 elements, it is linearly
dependent over F. Thus, there b0, . . . ,bn ∈ F not all 0 such that

b0 + b1a+ · · ·+ bnan = 0.

Thus, f(x) := b0 + b1x+ · · ·+ bnxn ∈ F[x] is a non-zero polynomial satisfying f(α) = 0.

Example 13.17.

1. Consider the extensions Q ⊆ R ⊆ C. It is known that π ∈ R is transcendental over Q. A
consequence of this is that πι ∈ C is also transcendental over Q. However, πι is algebraic
over R since it satisfies the non-zero polynomial x2 + π2 ∈ R[x].

Thus, the property of being algebraic depends on the base field. In particular, we have
shown that C/Q is not an algebraic extension, whereas C/R is, by Proposition 13.16, since
[C : R] = 2.

2. Let K be a finite field and let F be its prime subfield. Then, K is a finite dimensional vector
space over F (since K is finite) and thus, K/F is an algebraic extension by Proposition 13.16.
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Proposition 13.18. Let K/F be a field extension and let α ∈ K be algebraic over F. Then, the
following are true (with “irreducible” meaning “irreducible” over F[x]).

1. There exists a unique monic irreducible polynomial f(x) ∈ F[x] such that f(α) = 0.

2. f(x) generates the kernel of the map F[x]→ F[α] ⊆ K defined by p(x) 7→ p(α).

3. If g(x) ∈ F[x] is such that g(α) = 0, then f(x) | g(x).

4. f(x) has the least positive degree among all polynomials in F[x] that are satisfied by α.

Proof. Define ψ : F[x] → K by p(x) 7→ p(α). Since α is algebraic over F[x], I := kerψ is non-zero.
By Corollary 12.11, F[x] is a principal ideal domain, and hence I = 〈f(x)〉 for some f(x) ∈ F[x].
Moreover, f(x) is non-zero since I is non-zero. By the Isomorphism Theorem for Rings, F[x]/I
is isomorphic to a subring of K, and hence is an integral domain. By Proposition 10.17, I is a
prime ideal, and hence f(x) is prime. By Proposition 11.30, f(x) is irreducible. Scaling by an
appropriate factor, we may assume that f(x) is monic. Clearly, any other g(x) that is satisfied by α
must be an element of I, and thus f(x) | g(x). In particular, if g(x) is irreducible and monic, then
f(x) | g(x) =⇒ g(x) = af(x) for some a ∈ F×. Since g(x) is also monic, we have that a = 1,
giving us f(x) = g(x). Thus, such an f(x) is unique.

This proves the first three parts. The fourth part follows from the third via a simple application of
the Division Algorithm.

Definition 13.19. Let K/F be a field extension, and let α ∈ K be algebraic over F. The unique
irreducible monic polynomial in F[x] that is satisfied by α is called the minimal polynomial of α
over F. We denote this as irr(α, F).

The degree of irr(α, F) is called the degree of α over F and is denoted as degF α.

Example 13.20. Let α ∈ C be a square root of ι. Then, α satisfies f(x) := x4 + 1. We may show that
f(x) = irr(α, Q), and hence degQ α = 4. However, α also satisfies x2− ι, so that irr(α, Q(ι)) = x2− ι,
and degQ(ι) α = 2. Hence, the degree also depends on the base field.

Proposition 13.21. Let K/F be a field extension and α ∈ K be algebraic over F. Let f(x) :=
irr(α, F) and let n := deg f(x). Then,

1. F[α] = F(α) ∼= F[x]/〈f(x)〉.

2. dimF(F(α)) = n and {1,α, . . . ,αn−1} is an F-basis of F(α).

Proof. Consider the substitution homomorphism ψ : F[x] → F[α] defined by p(x) 7→ p(α). By
Proposition 13.18, kerψ = 〈f(x)〉. By Corollary 12.11, F[x] is a principal ideal domain. Hence, f(x)
is a prime element by Proposition 11.30, and hence 〈f(x)〉 is a prime ideal. Since f(x) 6= 0, we get
that 〈f(x)〉 is also a maximal ideal, by Proposition 11.22. Moreover, ψ is clearly surjective so that
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imψ = F[α]. Hence, by the Isomorphism Theorem for Rings, F[x]/〈f(x)〉 ∼= F[α]. Since 〈f(x)〉 is
maximal, F[x]/〈f(x)〉 is a field by Proposition 10.17. Thus, F[α] = F(α).

Consider the set B = {1,α, . . . ,αn−1}. Using f(x), we may write all higher powers of α as an F-
linear combination of elements of B. Hence, B spans F[α]. Now, suppose a0, . . . ,an−1 ∈ F satisfy

a0 + a1α+ · · ·+ an−1αn−1 = 0.

Then, g(x) := a0+a1x+ . . .+an−1xn−1 ∈ F[x] is a polynomial that is satisfied byα. However since
degg(x) < deg f(x), by Proposition 13.18, we get that g(x) = 0. This proves linear independence.

Corollary 13.22. Let K/F be a field extension and let α ∈ K be algebraic over F. Then, F(α)/F is
a finite, and hence, algebraic extension.

Definition 13.23. Let F ⊆ E1, E2 be fields. A F-homomorphism from E1 to E2 is a field homo-
morphism ϕ : E1 → E2 that fixes F.

If ϕ is an isomorphism, we call it an F-isomorphism.

Proposition 13.24. Let K/F be a field extension and let α,β ∈ K be algebraic over F. Then, the
following two statements are equivalent.

1. There exists an F-isomorphism ψ : F(α)→ F(β) such that ψ(α) = β.

2. irr(α, F) = irr(β, F).

Proof. (1 =⇒ 2) Let ψ : F(α)→ F(β) be as mentioned. Let f(x) := irr(α, F) and g(x) := irr(β, F).
Then,

0 = ψ(0)

= ψ(f(α))

= f(ψ(α)) (since ψ is an F-isomorphism)
= f(β).

Thus, by Proposition 13.18, g(x) | f(x). Since both are irreducible and monic, g(x) = f(x).

(2 =⇒ 1) Let f(x) := irr(α, F) = irr(β, F). The isomorphisms F(α) ∼= F[x]/〈f(x)〉 ∼= F(β) are
F-isomorphisms, and thus, so is their composition.

Definition 13.25. A field extension K/F is called a quadratic extension if [K : F] = 2.

Remark 13.26. Every quadratic extension is simple. If K/F is a quadratic extension and α ∈ K \F,
then [F(α) : F] > 1, and thus [F(α) : F] = 2. Thus, F(α) = K and K/F is simple.



§13 Algebraic Extensions 108

Definition 13.27. A chain of fields F1 ⊆ . . . ⊆ Fn is called a tower of fields if Fi is a subfield of
Fi+1 for all i = 1, . . . ,n− 1.

Proposition 13.28 (Tower Law). Let F ⊆ E ⊆ K be a tower of fields. Then,

[K : F] = [K : E] · [E : F] .

In particular, the left side is∞ iff the right side is.

Proof. If K/F is a finite extension, then so are K/E (any finite basis for K/F is a spanning set for
K/E) and E/F (E is an F-subspace of K). Thus, if either of K/E or E/F is not a finite extension,
then neither is K/F.

Now, suppose [K : E] =: n and [E : F] =: m are both finite. Let {αi}ni=1 ⊆ K be an E-basis of K, and
let {βj}mj=1 ⊆ E be an F-basis of E. Now, put B :=

{
αiβj | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
. We show that B

is an F-basis for K.

Let a ∈ K be arbitrary. Then,

a =

n∑
i=1

aiαi

for ai ∈ E. For each i = 1, . . . ,n, we may write

ai =

m∑
j=1

bijβj

for bij ∈ F. Now,

a =

n∑
i=1

m∑
j=1

bij(αiβj)

is an F-linear combination of elements of B. Hence, B spans K.

Now, suppose
{
bij | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
⊆ F satisfies

n∑
i=1

m∑
j=1

bij(αiβj) = 0.

We may group the terms to get
n∑
i=1

 m∑
j=1

bijαi

βj = 0.
Linear independence of {βj}mj=1 forces

∑m
j=1 bijαi = 0 for all i, Now, linear independence of {αi}ni=1

forces bij = 0 for all i, j, which proves linear independence. It remains to show that |B| = nm,
which we leave as an exercise.
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Corollary 13.29. Let K/F be a finite extension and let α ∈ K. Then, degF α divides [K : F].

Proof. This follows from the Tower Law by considering the tower F ⊆ F(α) ⊆ K. Note that since
K/F is a finite extension, α is algebraic over F.

Proposition 13.30. Let K/F be a field extension and let α1, . . . ,αn ∈ K be algebraic over F. Then,
F(α1, . . . ,αn) is a finite (and hence, algebraic) extension of F.

Proof. We leave the details of the proof to the reader. The following tower might be helpful.

F ⊆ F(α1) ⊆ F(α1,α2) · · · ⊆ F(α1, . . . ,αn)

Corollary 13.31. Let E/F and K/E be algebraic extensions. Then, K/F is an algebraic extension.

Proof. Let α ∈ K and let irr(α, E) = a0 + a1x+ · · ·an−1xn−1 + xn =: f(x). Let L = F(a0, . . . ,an−1).
Then, L/F is a finite extension since each ai ∈ E is algebraic over F. Moreover, 0 6= f(x) ∈ L[x].
Thus, α is algebraic over L and L(α)/L is a finite extension. By the Tower Law, L(α)/F is a finite
extension. Hence, α is algebraic over F by Proposition 13.16.

Corollary 13.32. Let K/F be a field extension. Then,

A :=
{
α ∈ K | α is algebraic over F

}
is a subfield of K containing F. Moreover, A/F is an algebraic extension.

Proof. It is clear that A contains F. We now show that A is a subfield. Let α,β ∈ A with β 6= 0.
Then, L := F(α,β) is a finite extension of F. Thus, all elements of L are algebraic over F. In
particular, so are α± β, αβ and αβ−1.

§§13.3. Compositum of Fields

Definition 13.33. Let E1, E2 ⊆ K be fields. The compositum of E1 and E2 is the smallest subfield
of K containing E1 and E2. We denote this by E1E2.

Example 13.34.

1. Suppose F ⊆ E1, E2 ⊆ K and E1 = F(α1, . . . ,αn). Then,

E1E2 = E2(α1, . . . ,αn).
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2. Letm andn be coprime positive integers. Consider the subfields F := Q(ζm) and E := Q(ζn)
of C. Then,

EF = Q(ζmn).

It is clear that EF ⊆ Q(ζmn), since ζn = ζmmn and ζm = ζnmn. On the other hand, since
gcd(m,n) = 1, by Bézout’s Lemma, there exist integers a,b ∈ Z such that am+ bn = 1.
Thus,

a

n
+
b

m
=

1

mn

which gives us ζmn = ζanζ
b
m and thus Q(ζmn) ⊆ EF.

Proposition 13.35. Let F be a field that is a subring of an integral domain R. If R is finite dimen-
sional as an F vector space, then R is a field.

Proof. It suffices to show that every non-zero element in R has a multiplicative inverse in R. Let
a ∈ R be arbitrary with a 6= 0. Since dimF R < ∞, there is a smallest n ≥ 1 such that the set
{1,a, . . . ,an} is linearly dependent. Then, let b0, . . . ,bn ∈ F be not all zero such that

b0 + b1a+ · · ·+ bnan = 0.

If bn = 0, then the minimality of n is contradicted. Hence, bn 6= 0. If b0 = 0, we may cancel a
(since R is an integral domain and a 6= 0) to again contradict the minimality of n. Thus, b0 6= 0.
Now, we have

a(b1 + · · · bnan−1) = −b0

which shows that
−
1

b0
(b1 + · · ·+ bnan−1) ∈ R

is a multiplicative inverse of a.

Proposition 13.36. Let F ⊆ E1, E2 ⊆ K be fields. Consider

L :=


n∑
i=1

αiβi | n ∈N,αi ∈ E1,βi ∈ E2

 .

That is, L is the set of all finite sums of products of elements of E1 and E2.

Suppose d := [E1 : F] · [E2 : F] < ∞. Then, L = E1E2 and [L : F] ≤ d. If [E1 : F] and [E2 : F] are
coprime, then equality holds.

Proof. We leave it as an exercise to the reader to show that L is a subring of K. Thus, L is an
integral domain. Let n := [E1 : F] and m := [E2 : F]. If {α1, . . . ,αn} and {β1, . . . ,βm} are F-bases
for E1 and E2, then the set

{
αiβj | 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
clearly spans L over F. Hence dimF L ≤

mn = d. In particular, dimF L is finite, so that L is a field by Proposition 13.35.
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Lastly, note that [Ei : F] divides [L : F] by the Tower Law. In particular, if gcd(m,n) = 1, then
mn | [L : F]. Since [L : F] ≤ mn, we are done.

Diagrammatically, this is depicted as

K

E1E2

E1 E2

F

≤n≤m

n m

§§13.4. Splitting Fields

Definition 13.37. Let F be a field and f(x) ∈ F[x] be a non-constant polynomial of degree n with
leading coefficient a ∈ F×. A field K ⊇ F is called a splitting field of f(x) over F if there exist (not
necessarily distinct) r1, . . . , rn ∈ K such that f(x) = a(x− r1) · · · (x− rn) and K = F(r1, . . . , rn).

Example 13.38. Consider F = Q, f(x) = x2 + 1 ∈ Q[x], and K = C. Although f(x) does factor
linearly over C as (x+ ι)(x− ι), C is not a splitting field of f(x) over Q since C 6= Q(ι,−ι). On the
other hand, C is a splitting field of f(x) over R since C = R(ι,−ι).

Corollary 13.39. Let f(x) ∈ F[x] be non-constant and let K be a splitting field of f(x) over F. Then,
K/F is an algebraic extension.

Proof. This follows trivially from Proposition 13.30.

Theorem 13.40. Let F be a field and let f(x) ∈ F[x] be non-constant. Then, there exists a field
K ⊇ F such that f(x) has a root in K.

Proof. Let g(x) be an irreducible factor of f(x). Since F[x] is a principal ideal domain (Corol-
lary 12.11), g(x) is also a prime element (Proposition 11.30), so that 〈g(x)〉 is a prime ideal. Since
g(x) is non-zero, 〈g(x)〉 is also a maximal ideal (Proposition 11.22). Now, put K = F[x]/〈g(x)〉.
K is clearly a field by Proposition 10.17. K clearly contains F as a subfield via the identification
a 7→ a, where the bar indicates the image in the quotient. Moreover, x is a root of g(x) since
g(x) = g(x) = 0 in the quotient.
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Theorem 13.41 (Existence of Splitting Field). Let F be a field. Any polynomial f(x) ∈ F[x] of
positive degree has a splitting field.

Proof. Let n := deg f(x). By Theorem 13.40, there exists a field F1 ⊇ F such that f(x) has a root,
say a1, in F1. Now,

f(x) = (x− a1) · f1(x)

where deg f1(x) = n− 1. Continuing inductively, we get fields

Fn ⊇ · · · ⊇ F1 ⊇ F

with ai ∈ Fi such that
f(x) = a(x− a1) · · · (x− an).

Then, K = F(a1, . . . ,an) ⊆ Fn is a splitting field.
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§14. Symmetric Polynomials

Definition 14.1. Let R be a ring and let S = R[x1, . . . , xn]. Let Sn denote the symmetric group.
Then, any τ ∈ Sn induces an automorphism gτ : S→ S, defined by

gt
(
f(x1, . . . , xn)

)
:= f

(
xτ(1), . . . , xτ(n)

)
.

Example 14.2. Suppose n = 3 and τ = (1 2 3). Then, the polynomial x1+ x22+ x
3
3 in Z[x] is mapped

to x2 + x23 + x
3
1 via gτ.

Definition 14.3. A polynomial f ∈ R[x1, . . . , xn] is said to be a symmetric polynomial (in n vari-
ables) if gτ(f) = f for all τ ∈ Sn.

Definition 14.4. Let S = R[x1, . . . , xn] and consider f(T) ∈ S[T ] given by

f(T) = (T − x1) · · · (T − xn).

We may write f(T) as
f(T) = Tn − σ1T

n−1 + · · ·+ (−1)nσn,

for σ1, . . . ,σn ∈ S. Then, σ1, . . . ,σn are symmetric polynomials, called the elementary symmetric
polynomials (in n variables).

Remark 14.5. Note that one can explicitly write down the elementary symmetric polynomials, as
follows.

σ1 =

n∑
i=1

xi

σ2 =
∑

1≤i1<i2≤n
xi1xi2

...
σn = x1 · · · xn.

It is now easy to verify that these are all indeed symmetric polynomials.

Definition 14.6. Given an elementary symmetric polynomial σi ∈ R[x1, . . . , xn] (for n ≥ 2), we
define the elementary symmetric polynomial σ0i in (n− 1) variables as

σ0i := σi(x1, . . . , xn−1, 0).
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Example 14.7. Consider n = 3 and σ2 = x1x2+ x1x3+ x2x3. Then, σ02 = x1x2 is the second symmet-
ric polynomial in 2 variables. In fact, any elementary symmetric polynomial in (n− 1) variables
is of the form σ0i for the corresponding elementary symmetric polynomial σi in n variables.

Theorem 14.8 (Fundamental Theorem of Symmetric Polynomials). Let R be a commutative ring.
Then, every symmetric polynomial in S := R[x1, . . . , xn] is a polynomial in the elementary sym-
metric polynomials in a unique way. More precisely, if f(x1, . . . , xn) ∈ S is symmetric, then there
exists a unique g ∈ R[u1, . . . ,un] such that

g(σ1, . . . ,σn) = f(x1, . . . , xn)

where the above equality is in S.

Proof. Existence. We apply induction on n, the number of variables. The case n = 1 is clear since
every polynomial is symmetric and σ1 = x1. Thus, we may choose g to have the same coefficients
as f.

Suppose the theorem is true for n− 1 variables. We now apply induction on deg f. If f is constant,
then again choosing g to have the same coefficients as f works. Suppose deg f ≥ 1. Now, we
define

f0 := f(x1, . . . , xn−1, 0) ∈ R[x1, . . . , xn−1].

Then, f0 is a symmetric polynomial in n− 1 variables. By the induction hypothesis on the number
of variables, there exists g ∈ R[u1, . . . ,un−1] such that

f0(x1, . . . , xn−1) = g(σ01, . . . ,σ
0
n−1).

Now, define f1(x1, . . . , xn) ∈ R[x1, . . . , xn] as

f1(x1, . . . , xn) := f(x1, . . . , xn) − g(σ1, . . . ,σn−1).

Then, we have f1(x1, . . . , xn−1, 0) = 0. Thus, xn | f1. Since f1 is symmetric, each xi divides f1, so
that σn | f1. Thus, we can write

f1(x1, . . . , xn) = σn · h(x1, . . . , xn)

for some h ∈ R[x1, . . . , xn]. Since σn is not a zero-divisor in R[x1, . . . , xn], we get that h is also a
symmetric polynomial and degh < deg f. Thus, h is a polynomial in σ1, . . . ,σn and hence, so is f.

Uniqueness. For uniqueness, it suffices to show that the elementary symmetric polynomials are
algebraically independent. That is, the map ϕ : R[z1, . . . , zn]→ R[x1, . . . , xn] defined by

zi 7→ σi and ϕ|R = idR

is an injection. We use induction on n to prove this. The case n = 1 is clear since σ1 = x1. Assume
now that n ≥ 2, and that the result holds for n− 1. If ϕ is not an injection, then pick a nonzero
polynomial f(z1, . . . , zn) ∈ kerϕ of least degree. We may write f as a polynomial in zn as follows.

f(z1, . . . , zn) = f0(z1, . . . , zn−1) + · · ·+ fd(z1, . . . , zn−1)zn
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with fd 6= 0. Since d is minimal, and σn is not a zero-divisor, we also get f0 6= 0. Since f ∈ kerϕ,
we have

f0(σ1, . . . ,σn−1) + · · ·+ fd(σ1, . . . ,σn−1)σdn = 0.

The above equality is in R[x1, . . . , xn]. Putting xn = 0, we get

f0(σ
0
1, . . . ,σ

0
n−1) = 0

which shows that the corresponding ϕ for n− 1 variables is not an injection, a contradiction.

Definition 14.9. Let S = R[x1, . . . , xn]. For k ≥ 1, we define

wk = x
k
1 + · · ·+ xkn.

Theorem 14.10 (Newton’s Identities). With wk as defined above, we have

wk =

{
σ1wk−1 − σ2wk−2 + · · ·+ (−1)kσk−1w1 + (−1)k+1σkk

21 k ≤ n,
σ1wk−1 − σ2wk−2 + · · ·+ (−1)n+1σnwk−n k > n.

Proof. Let z be an indeterminate over S := R[x1, . . . , xn]. Observe that

(1− x1z) · · · (1− xnz) = 1− σ1z+ · · ·+ (−1)nσnz
n =: σ(z).

Now, define w(z) ∈ SJzK as

w(z) =

∞∑
k=1

wkz
k

=

∞∑
k=1

 n∑
i=1

xki

 zk
=

n∑
i=1

 ∞∑
k=1

(xiz)
k


=

n∑
i=1

xiz

1− xiz
.

Now, since σ(z) = (1− x1z) · · · (1− xnz), we have

σ′(z) = −

n∑
i=1

xiσ(z)

1− xiz

21Note that the last term is σkk and not σkn, as one might have expected.
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where we have taken the formal derivative in SJzK. (We shall define this derivative more for-
mally later on in Definition 16.1, but for now, one may think of it as the ‘usual’ derivative). On
rearranging, we get

−
zσ′(z)

σ(z)
=

n∑
i=1

xiz

1− xiz
= w(z)

which further gives us
w(z)σ(z) = −zσ′(z).

Moreover, one may compute σ′(z) independently from the first equation. Using that expression,
we get

w(z)σ(z) = σ1z− 2σ2z
2 + · · ·+ (−1)nnσnz

n.

Comparing the coefficients of zk on both sides gives us the desired result.

Definition 14.11. Let F be a field and let f(x) ∈ F[x] be a non-constant monic polynomial. Let K

be a splitting field of f(x) over F, so that

f(x) = (x− r1) · · · (x− rn)

for r1, . . . , rn ∈ K. Then, the discriminant of f(x) is defined as

discK(f(x)) :=
∏

1≤i<j≤n
(ri − rj)

2.

Remark 14.12. Note that discK(f(x)) = 0 ⇐⇒ f(x) has repeated roots in K. Moreover, by
construction, discK(f(x)) has a square root in K, given by∏

1≤i<j≤n
(ri − rj) ∈ K.

Proposition 14.13. Let F be a field and let f(x) ∈ F[x] be non-constant and monic. Suppose K and
K′ are two splitting fields of f(x) over F. Then,

discK(f(x)) = discK′(f(x)) ∈ F.

In other words, the discriminant takes value in F and is independent of the splitting field chosen.

Proof. Let r1, . . . , rn ∈ K be such that f(x) = (x − r1) · · · (x − rn). Consider the Vandermonde
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matrix,

M =


1 1 · · · 1

r1 r2 · · · rn
r21 r22 · · · r2n
...

...
. . .

...
rn−11 rn−12 · · · rn−1n

 .

Then, discK(f(x)) =
(
det(M)

)2
= det(MM>). Let σ1, . . . ,σn ∈ F[x1, . . . , xn] be the elementary

symmetric polynomials and define

si := σi(r1, . . . , rn).

Now, note that
f(x) = xn − s1x

n−1 + · · ·+ (−1)nsn

and since f(x) ∈ F[x], si ∈ F for all i. Also, define

vk := rk1 + · · ·+ rkn

for all k ≥ 1. By Newton’s Identities, each vk can be written as a combination of si’s, so that each
vk ∈ F. Moreover, we have

MM> =


n v1 · · · vn−1
v1 v2 · · · vn
v2 v3 · · · vn+1
...

...
. . .

...
vn−1 vn · · · v2n−2

 .

Thus, discK(f(x)) = det(MM>) ∈ F.22 Note that since vk can be calculated directly in terms of
si, the coefficients of f(x) itself, the discriminant does not depend on the choice of the splitting
field.

In view of the above proof, we have the following alternate definition of the discriminant, that is
independent of the splitting field.

Definition 14.14. Let F be a field and let f(x) = xn − σ1x
n−1 + · · · + (−1)nσn ∈ F[x] be a monic

polynomial. With wk for k = 1, . . . , 2n− 2 as defined in Newton’s Identities, we have

disc(f(x)) := det


n w1 · · · wn−1
w1 w2 · · · wn
w2 w3 · · · wn+1
...

...
. . .

...
wn−1 wn · · · w2n−2

 .

22Note that the n in the matrix is defined as 1+ · · ·+ 1(n times), where 1 is the identity in F. We may also regard n
to represent the image of n ∈ Z under the homomorphism that sends 1Z to 1F.
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Remark 14.15. In the above definition, σi are not the elementary symmetric polynomials. They are
arbitrary elements of F. We are defining wk recursively in terms of σi, using Newton’s Identities,
which is what motivates the use of the same notation.

Proposition 14.16 (Discriminant in terms of derivative). Suppose f(x) =
∏n
i=1 (x− ri), then f′(x) =

(−1)(
n
2)
∏n
i=1 f

′(ri).

Proof. Observe that

f′(x) =
n∑
i=1

f(x)

x− ri
=

n∑
i=1

n∏
j=1
j 6=i

(x− rj).

Thus, we have

f′(ri) =
n∏
j=1
j 6=i

(ri − rj)

from which the result follows.

Example 14.17 (Discriminant of a Quadratic).

Let x2 + bx+ c ∈ F[x] be a quadratic. We have σ1 = −b,σ2 = c. Thus, Newton’s Identities give us

w1 = −b,

w2 = b
2 − 2c.

Thus, we have

disc(f(x)) = det

[
2 −b
−b b2 − 2c

]
= b2 − 4c,

which is the usual determinant of a quadratic.

We now (finally) prove the Fundamental Theorem of Algebra.

Lemma 14.18.

1. Every real polynomial of odd degree has a real root.

2. Every complex number has a square root. Thus, every complex quadratic polynomial has a
root in C.

Proof. The first part follows trivially from the intermediate value property. For the second, for any
a+ bι ∈ C, with a,b ∈ R, we define c,d ∈ R as follows.

c :=

√
1

2
[a+

√
a2 + b2] and d :=

√
1

2
[−a+

√
a2 + b2].
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Then, we have (c+ dι)2 = a+ bι.

Theorem 14.19 (Fundamental Theorem of Algebra). Every non-constant complex polynomial has
a root in C.

Proof. Let g(x) ∈ C[x] be a non-constant complex polynomial. Then, f(x) := g(x)g(x) is a non-
constant real polynomial, where g(x) denotes the polynomial whose coefficients are complex con-
jugates of the coefficients of g(x). Note that if f(z) = 0 for some z ∈ C, then g(z) = 0 or g(z) = 0.
If g(z) = 0, then g(z) = 0, so that g(x) has a complex root in either case. Thus, it suffices to show
that every non-constant real polynomial has a complex root.

Given any f(x) ∈ R[x], we can write deg f(x) = 2nq for unique n ≥ 0, and odd q ∈ N. We prove
the statement by induction on n. In the case that n = 0, f(x) has odd degree, and hence has a real
(and consequently, a complex) root. Now, assume that n ≥ 1 and that the statement is true for
n− 1. Let d := deg f(x) and let K := C(α1, . . . ,αd) be a splitting field of f(x) over C, where αi are
the roots of f(x). For r ∈ R, define

yij(r) = αi +αj + rαiαj

for 1 ≤ i ≤ j ≤ d. There are
(
d+1
2

)
such pairs (i, j), so that the polynomial

hr(x) :=
∏

1≤i≤j≤d
(x− yij(r))

has degree

deghr(x) =
(
d+ 1

2

)
=
1

2
d(d+ 1) = 2n−1 q(d+ 1)︸ ︷︷ ︸

odd

.

Note that the coefficients of hr(x) are elementary symmetric polynomials in yij’s, and hence, are
symmetric polynomials in αi, . . . ,αd. Thus, the coefficients of hr(x) are polynomials in coefficients
of f(x), so that hr(x) ∈ R[x]. By the inductive hypothesis on n, hr(x) has a root zr ∈ C ⊆ K. Thus,
zr = yi(r),j(r)(r) for some 1 ≤ i(r) ≤ j(r) ≤ d.

Let P :=
{
(i, j) | 1 ≤ i ≤ j ≤ d

}
and define ϕ : R → P by r 7→ (i(r), j(r)). Since P is finite and R is

not, ϕ is not injective. Thus, there exist c,d ∈ R, with c 6= d, such that

(i(c), j(c)) = (i(d), j(d)) =:= (a,b) ∈ P.

Thus,
zc = αa +αb + cαaαb and zd = αa +αb + dαaαb.

Although apriori we only know that αa,αb ∈ K, we now have

αaαb =
zc − zd
d− c

∈ C

and consequently,
αa +αb = zc − cαaαb ∈ C.

Thus, αaαb and αa +αb ∈ C. However, these are the coefficients of the quadratic

x2 − (αa +αb)x+αaαb ∈ C[x],

of which αa and αb are both roots. By Lemma 14.18, one of αa and αb must be in C. Since αa and
αb are both roots of f(x), we are done.
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§15. Algebraic Closure of a Field

Definition 15.1. A field K is called an algebraically closed field if every non-constant polynomial
f(x) ∈ K[x] has a root in K.

Definition 15.2. Let K/F be a field extension. We say that K is an algebraic closure of F if K is
algebraically closed and K/F is an algebraic extension.

We have the following simple proposition.

Proposition 15.3.

1. K is algebraically closed iff every non-constant polynomial in K[x] factors as a product of
linear factors.

2. C is algebraically closed.

3. If K is algebraically closed and L/K is an algebraic extension, then L = K.

Proposition 15.4. Let K/F be an extension where K is algebraically closed. Define,

A :=
{
α ∈ K | α is algebraic over F

}
.

Then, A is an algebraic closure of F.

Proof. By Corollary 13.32, we already know that A/F is an algebraic extension. Hence, it remains
to show that A is algebraically closed. Let f(x) ∈ A[x] be non-constant. Then, f(x) has a root
α ∈ K since K is algebraically closed. Thus. α is algebraic over A, and hence over F, by Corol-
lary 13.31. Thus, α ∈ A.

Lemma 15.5. Let {Fi}i≥1 be a sequence of fields with

F1 ⊆ F2 ⊆ · · ·

and let F :=
⋃
i≥1 Fi. Then, F is a field with the following operations: Given a,b ∈ F, there exist

smallest i, j ∈ N such that a ∈ Fi and b ∈ Fj. Then, a,b ∈ Fi+j and we define a+ b and ab to be
the corresponding elements from Fi+j.

Moreover, each Fi is a subfield of F.

Proof. We leave this as an exercise to the reader. Note that we have used “smallest” just to ensure
that the operations are well-defined. Of course, since Fi ⊆ Fj (by which we always mean that Fi
is a subfield of Fj) for any i ≤ j, we may pick any i and j.
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Theorem 15.6 (Existence of Algebraically Closed Extension). Let F be a field. Then, there exists
an algebraically closed field containing F.

Proof. (Artin). We first show that given any field F, we can construct a field F1 ⊇ F containing
roots of any non-constant polynomial in F[x]. Let S be a set of indeterminates which are in one-
to-one correspondence with the set of non-constant polynomials in F[x]. Let xf ∈ S denote the
indeterminate corresponding to f.

Consider the polynomial ring F[S]. Let

I :=
〈
f(xf) | f ∈ F[x], deg f ≥ 1

〉
be the ideal generated by the polynomials f(xf) ∈ S. We now show that 1 /∈ I, so that I is a proper
ideal of F[S]. Suppose that 1 ∈ I. Then,

1 = g1f1(xf1) + · · ·+ gnfn(xfn)

for some g1, . . . ,gn ∈ F[S]. Note that the polynomials gj involve only finitely many variables. Let
xi := xfi for i = 1, . . . ,n and let xn+1, . . . , xm be the remaining variables in g1, . . . ,gn. Then, we
have

n∑
i=1

gi (x1, . . . , xn, xn+1, . . . , xm) fi(xi) = 1.

Now, let E ⊇ F be an extension containing roots αi of fi (E exists thanks to Theorem 13.40). Then,
putting xi = αi for i = 1, . . . ,n and xn+1 = · · · = xm = 0, we arrive at a contradiction.

Hence, I is a proper ideal of F[S], and is thus contained in some maximal ideal m ⊆ F[S]. Put
F1 := F[S]/m. Then, F1 is a field extension of F. Moreover, xf := xf + m ∈ F1 is a root of
f(x) ∈ F[x]. Thus, F1 is an extension of F in which every non-constant polynomial of F[x] has a
root.

Repeating this procedure, we get a sequence of fields

F =: F0 ⊆ F1 ⊆ F2 · · ·

such that every non-constant polynomial in Fi has a root in Fi+1.

Now, put K =
⋃
i≥0 Fi. K is a field by Lemma 15.5 that has each Fi as a subfield. Now, if

f(x) ∈ K[x], then f(x) ∈ Fn[x] for some n. Thus, f(x) has a root in Fn+1[x] ⊆ K, as desired.

Corollary 15.7 (Existence of Algebraic Closure). Every field F has an algebraic closure.

Proof. By Theorem 15.6, there exists an algebraically closed field L ⊇ F. Now, use Proposi-
tion 15.4.
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Proposition 15.8. Let σ : F → L be an embedding of fields and let L be algebraically closed. Let
α ∈ K ⊇ F be algebraic over F and let p(x) = irr(α, F). Suppose p(x) =

∑
aix

i and define
pσ(x) :=

∑
σ(ai)x

i. Then, τ 7→ τ(α) is a bijection between the following sets.{
τ : F(α)→ L | τ is an embedding and τ|F = σ

} ↔ {β ∈ L | pσ(β) = 0
}

.

Proof. First, we note that the map is indeed well-defined. Let τ be an embedding that extends σ.
Then,

τ(p(α)) = pσ(τ(α)) = 0.

Thus, τ(α) is indeed a root of pσ.

Now, let β ∈ L be such that pσ(β) = 0. Define τβ : F(α) → L by τβ(f(α)) = fσ(β) for f(x) ∈ F[x].
We show that τβ is well-defined. Suppose f(α) = g(α). Then, (f − g)(α) = 0, so that p(x) |

f(x) − g(x) by Proposition 13.18. Hence, pσ(x) | fσ(x) − gσ(x), giving us fσ(β) = gσ(β). Hence,
τβ is well-defined. Moreover, it is clearly a homomorphism that extends σ. It is easily seen that
β 7→ τβ is a two-sided inverse of the map τ 7→ τα.

Remark 15.9. The above proposition essentially says that the number of ways to extend from F to
F(α) is precisely the number of roots that pσ(x) has in L. In particular, this set is non-empty since
L is algebraically closed.

Theorem 15.10. Let σ : F → L be an embedding where L is algebraically closed. If K/F is an
algebraic extension, then there exists an embedding τ : K→ L that extends σ.

Moreover, if K is an algebraic closure of F, and L is an algebraic closure of σ(F), then τ is an
isomorphism extending σ.

Proof. Consider the set

Σ :=
{
(E, τ) | F ⊆ E ⊆ K and τ : E→ L such that τ|F = σ

}
.

Note that Σ is non-empty since (F,σ) ∈ Σ. Define the relation ≤ on Σ by

(E, τ) ≤ (E′, τ′) ⇐⇒ E ⊆ E′ and τ′|E = τ.

Then, (Σ,≤) is a partially ordered set. Moreover, if Λ =
{
(Ei, τi)

}
i∈I is a chain in Σ, then E :=⋃

i∈I Ei is a subfield of K, and τ : E → L defined as τ(x) := τi(x) for x ∈ Ei is well-defined.
Furthermore, (E, τ) is an upper bound on Λ. By Zorn’s Lemma, there exists a maximal element
(E, τ) ∈ Σ. We show that E = K. If not, pick α ∈ K \ E. By Proposition 15.8, we can extend τ
to an embedding τ′ : E(α) : L, which contradicts the maximality of (E, τ). Thus, τ : K → L is the
desired embedding that extends σ.

Suppose now that K is an algebraic closure of F and L of σ(F). We have

σ(F) ⊆ τ(K) ⊆ L.
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Thus, L/τ(K) is also algebraic. Since τ(K) is algebraically closed, we get L = τ(K), which proves
that τ is surjective, and hence an isomorphism. (Since τ is an embedding, it is injective to begin
with).

Corollary 15.11 (Isomorphism of Algebraic Closures). If K1 and K2 are two algebraic closures of
F, then they are F-isomorphic.

Proof. Consider the inclusion map i : F ↪−→ K2. Theorem 15.10 allows us to extend it to an F-
isomorphism τ : K1 → K2.

Definition 15.12. Given a field F, we use F to denote an algebraic closure of F.

Theorem 15.13 (Isomorphism of Splitting Fields). Any two splitting fields E and E′ of a non-
constant polynomial f(x) ∈ F[x] over F are F-isomorphic.

Proof. Let E be an algebraic closure of E. Then, it is also one of F. Thus, there exists an embedding
τ : E′ → E that extends the inclusion i : F ↪−→ E, by Theorem 15.10.

Let f(x) = a(x−α1) · · · (x−αn) be a factorisation of f(x) in E′[x]. Then,

fτ(x) = a(x− τ(α1)) · · · (x− τ(αn)) ∈ E[x].

We have E′ = F(α1, . . . ,αn) and so τ(E′) = F(τ(α1), . . . , τ(αn)). Thus, τ(E′) is a splitting field
of fτ over F. But fτ = f since τ extends the inclusion map. Thus, τ(E′) = E since any algebraic
closure contains a unique splitting field.
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§16. Separable Extensions

§§16.1. Definitions

Definition 16.1. Let F be a field. Define the F-linear map DF : F[x]→ F[x] by

DF

 n∑
i=0

aix
i

 :=
n∑
i=1

iaix
i−1.

Given any f(x) ∈ F[x], we call DF(f(x)) the (formal) derivative of f(x), and denote it by f′(x).

Remark 16.2. Note that the above definition requires no notion of limits. In the case that F = R or
C, it coincides with the usual derivative if we identify a polynomial by the function it represents.

We leave the proofs of the following two easy propositions as exercises.

Proposition 16.3. Let f(x),g(x) ∈ F[x] and let a ∈ F be arbitrary. Then,

1. (f± ag)′(x) = f′(x)± ag′(x),

2. (fg)′(x) = f′(x)g(x) + f(x)g′(x).

Proposition 16.4. Let F ⊆ E be a field extension. Then, DE|F = DF. Thus, the notation f′(x) is
unambiguous.

Definition 16.5. Let f(x) ∈ F[x] be a non-constant monic polynomial and let E be a splitting field
of f(x) over F. In E[x], factorise f(x) uniquely as

f(x) = (x− r1)
e1 · · · (x− rg)eg ,

where r1, . . . , rg ∈ E are distinct and each ei ∈N+.

The numbers e1, . . . , eg are called the multiplicities of the roots r1, . . . , rg. If ei = 1 for some i, then
ri is called a simple root and a repeated root otherwise.

If each root is a simple root, then f(x) is said to be a separable polynomial.

If f(x) is not monic, we have the same definitions upon division by the leading coefficient.

Remark 16.6. Note that as stated above, the separability of a polynomial depends on the split-
ting field chosen. However, in view of Remark 14.12, we see that separability depends only on
disc(f(x)), which we have seen to be independent of the splitting field chosen. (Proposition 14.13).
The following proposition shows something stronger.



§16 Separable Extensions 125

Proposition 16.7. The number of roots and their multiplicities are independent of the splitting
field chosen for f(x) over F.

Proof. Let E and K be splitting fields of f(x) over F. By Theorem 15.13, there exists an F-isomorphism
τ : E→ K. In turn, we get an isomorphism ϕτ : E[x]→ K[x], defined by∑

aix
i 7→∑ τ(ai)x

i.

Now, let
∏g
i=1 (x− ri)

ei be the unique factorisation of f(x) in E[x]. Then, the above isomorphism
shows that

f(x) =

g∏
i=1

(x− τ(ri))
ei

is the unique factorisation of f(x) in K[x], from which the result follows.

Proposition 16.8. Let f(x) ∈ F[x] be monic and let r ∈ E ⊇ F be a root of f(x). Then, r is a repeated
root iff f′(r) = 0.

Proof. ( =⇒ ) If r is a repeated root, then write f(x) = (x− r)2g(x) for g(x) ∈ E[x]. Then, taking the
derivative gives us

f′(x) = 2(x− r)g(x) + (x− r)2g′(x).

Thus, f′(r) = 0.

(⇐= ) Suppose f(x) = (x− r)g(x). Then,

0 = f′(r) = (r− r)g′(r) + g(r) = g(r).

Thus, (x− r) | g(x) and hence, (x− r)2 | f(x).

Theorem 16.9 (Derivative Criterion for Separability). Let f(x) ∈ F[x] be monic.

1. If f′(x) = 0, then every root of f(x) is a repeated root.

2. If f′(x) 6= 0, then f(x) has all roots simple iff gcd(f(x), f′(x)) = 1.

Proof. Let E be a splitting field of f(x) over F.

1. Let r ∈ E be a root of f(x). Then, f′(r) = 0 by hypothesis, and hence r is a repeated root by
Proposition 16.8.

2. Assume f′(x) 6= 0.

( =⇒ ) Suppose f(x) has all roots simple. We need to show that f(x) and f′(x) has no common
root. Let r be a root of f(x). Then, f′(r) 6= 0, by Proposition 16.8, and we are done.

( ⇐= ) Suppose gcd(f(x), f′(x)) = 1 and r ∈ E is an arbitrary root of f(x). Then, f′(r) 6= 0,
and r is a simple root by Proposition 16.8.
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Proposition 16.10. Let f(x) ∈ F[x] be irreducible and non-constant.

1. f(x) is separable iff f′(x) 6= 0.

2. If ch(F) = 0, then f(x) is separable.

In other words, irreducible polynomials over fields of characteristic zero are separable.

Proof. Let E be a splitting field of f(x) over F.

1. ( =⇒ ) f(x) has no repeated roots, thus f′(x) 6= 0 by Derivative Criterion for Separability.

( ⇐= ) Suppose f′(x) 6= 0 and r ∈ E is a repeated root of f(x). Then, by Proposition 16.8,
f′(r) = 0. Thus, g(x) := gcd(f(x), f′(x)) 6= 1. Irreducibility of f(x) forces f(x) = g(x), which
implies f(x) | f′(x), a contradiction since deg f′(x) < deg f(x).

2. In fields of characteristic zero, only the constant polynomials have derivative zero (since i ·
ai 6= 0 if ai 6= 0). Since f(x) is non-constant, f′(x) 6= 0, and thus the previous part applies.

Definition 16.11. Let F be a field of prime characteristic p. Define

Fp :=
{
αp ∈ F | α ∈ F

}
to be the set of all pth powers of elements of F.

Proposition 16.12. Fp is a subfield of F.

Proof. Only closure under addition is not obvious. For this, recall that (x+ y)p = xp + yp. (Propo-
sition 13.4).

Proposition 16.13. Let F be a field with ch(F) = p > 0. Then, f(x) := xp − a ∈ F[x] is either
irreducible in F[x], or a ∈ Fp. In other words, either f(x) is irreducible or it has a root.

Proof. Suppose f(x) is not irreducible. Write f(x) = g(x)h(x) with 1 ≤ degg(x) =: m < p. Let
b ∈ E be a root of f(x) in a splitting field E of f(x) over F. Then, bp = a. Thus, f(x) factorises in
E[x] as

f(x) = xp − bp = (x− b)p.

Since E[x] is a unique factorisation domain (Corollary 12.11), we see that g(x) = (x−b)m (we may
assume that g(x) is monic). Note that the coefficient of xm−1 ismb. By assumption,mb ∈ F. Since
1 ≤ m < p, we see that b ∈ F. Thus, a = bp ∈ Fp.

Proposition 16.14. Let f(x) ∈ F[x] be an irreducible polynomial and let p := ch(F) > 0. If f(x) is
not separable, then there exists g(x) ∈ F[x] such that f(x) = g(xp).
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Proof. Since f(x) is irreducible and not separable, we must have f′(x) = 0. Write

f(x) = a0 + a1x+ · · ·+ anxn

and note that
f′(x) = a1 + 2a2x+ · · ·+nanxn−1 = 0.

Thus, kak = 0 for k = 1, . . . ,n. When p - k, we clearly have ak = 0, since we may cancel the k.
Thus, f(x) is of the form

f(x) = a0 + apx
p + · · ·+ ampxmp.

for somem ∈N+. Thus, g(x) = a0 + apx+ · · ·+ ampxm works.

Definition 16.15. Let K/F be a field extension. An algebraic element α ∈ K over F is called a
separable element over F if irr(α, F) is separable over F.

We say that K/F is a separable extension if every α ∈ K is separable.

We say that F is a perfect field if every algebraic extension of F is separable. Equivalently, every
irreducible polynomial in F[x] is separable.

Corollary 16.16. Every field of characteristic zero is perfect.

Proof. Proposition 16.10.

Proposition 16.17. Let F be a field with characteristic p > 0. Then, F is perfect iff F = Fp.

Proof. ( =⇒ ) Suppose F is perfect and suppose F 6= Fp. Pick α ∈ F \Fp. Consider the polynomial
f(x) = xp − α ∈ F[x]. By Proposition 16.13, f(x) is irreducible. However, f′(x) = pxp−1 = 0 (since
F has characteristic p). Thus, by Proposition 16.10, f(x) is not separable, which is a contradiction
since F was assumed to be perfect.

(⇐= ) Suppose F = Fp and f(x) ∈ F[x] is irreducible and not separable. By Proposition 16.14, we
may write

f(x) =

m∑
i=0

aix
ip.

Let bi ∈ F be such that ai = b
p
i . (Such a bi exists since F = Fp). Now, we have

f(x) =

m∑
i=0

aix
ip =

m∑
i=0

b
p
i x
ip =


m∑
i=0

bix
i

︸ ︷︷ ︸
∈F[x]


p

, (By Corollary 13.5)
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which contradicts the irreducibility of f(x). Thus, F is perfect.

Corollary 16.18. Every finite field is perfect.

Proof. Let F be a finite field of characteristic p > 0 (a finite cannot have characteristic zero since Z

is infinite). We show that F = Fp.

Recall that the prime subfield of F is the field Fp with p elements. Since F is a vector space over
Fp, we have |F| = pn for some n ∈ N+, where n =

[
F : Fp

]
(Note that

[
F : Fp

]
< ∞ since F is

finite). By Lagrange’s Theorem, αp
n−1 = 1 for all α ∈ F× (consider the multiplicative group F× of

order pn − 1). Thus, αp
n
= α for all α ∈ F (including 0).

Thus, given any arbitrary α ∈ F, choosing β = αp
n−1

gives us α = βp ∈ Fp. The result follows
from Proposition 16.17.

§§16.2. Extensions of Embeddings

Proposition 16.19. Let f(x) ∈ F[x] be an irreducible monic polynomial. Then, all roots of f(x) have
equal multiplicity (in any splitting field). If ch(F) = 0, then all roots are simple. If ch(F) =: p > 0,
then all roots have multiplicity pn for some n ∈N.

Proof. Let F ⊇ F be an algebraic closure of F. Let α,β ∈ F be roots of f. We have an F-
isomorphism σ : F(α) → F(β) determined by α 7→ β. Thus, σ can be extended to an automor-
phism τ of F. Suppose f(x) = (x−α)mh(x) wherem is the multiplicity of α and h(x) ∈ F[x]. Since
τ fixes F, it also fixes f(x) ∈ F[x]. Thus, applying τ, we get

f(x) = fτ(x) = (x−β)mhτ(x).

Thus, the multiplicity of β is at leastm. By symmetry, we have equality.

If ch(F) = 0, then f(x) is separable by Proposition 16.10. Thus, all roots are simple.

Now, suppose ch(F) =: p > 0. Let n ∈N be the largest such that there exists a polynomial g(x) ∈
F[x] such that f(x) = g(xp

n
). Note that if no such positive n exists, we can take g = f and n = 0.

Then, g is irreducible since f is so. Moreover, g must be separable. If not, by Proposition 16.14,
we must have g(x) = h(xp) for some h(x) ∈ F[x]. But then, f(x) = h(xp

n+1
), contradicting the

maximality of n. Thus, g(x) factors as (x− r1) · · · (x− rg) in F where each factor is distinct. Since
F is algebraically closed, we can find s1, . . . , sg, necessarily distinct, such that sp

n

i = ri for all i. We
then have

f(x) = g(xp
n

) = (x− s1)
pn · · · (x− sg)p

n

,

as desired.

Theorem 16.20. Let σ : F → L be an embedding of fields where L is an algebraic closure of σ(F).
Similarly, let τ : F → L′ be an embedding of fields where L′ is an algebraic closure of τ(F). Let E

be an algebraic extension of F.



§16 Separable Extensions 129

Let Sσ (resp. Sτ) denote the set of extensions of σ (resp. τ) to embeddings of E into L (resp. L′).
Let λ : L→ L′ be an isomorphism extending τ ◦ σ−1 : σ(F)→ τ(F).

The map ψ : Sσ → Sτ given by ψ(σ̃) = λ ◦ σ̃ is a bijection.

L′ L

τ̃(E) E σ̃(E)

τ(F) F σ(F)

λ

τ̃∈ Sτ σ̃∈ Sσ

τ σ

Proof. If σ̃ ∈ Sσ, then for any x ∈ F, we have

(λ ◦ σ̃)(x) = λ(σ(x)) = (τ ◦ σ−1)(σ(x)) = τ(x).

Thus, ψ actually maps into Sτ. Since λ is an isomorphism, ψ is easily seen to be a bijection.
Explicitly, the inverse of ψ is the map τ̃ 7→ λ−1 ◦ τ.

Remark 16.21. The above proposition says that the “number” (cardinality) of extensions does not
depend on L or on the embedding σ. Since E is an arbitrary algebraic extension of F, the set Sσ
need not be finite.

Thus, we may assume L ⊇ F to be an algebraic closure of F and σ to be the inclusion map.

Definition 16.22. If E/F is an algebraic extension, then the cardinality of Sσ (as in Theorem 16.20)
is called the separable degree of E/F and is denoted as [E : F]s.

Proposition 16.23. Let α ∈ E ⊇ F be algebraic over F and n := deg
(
irr(α, F)

)
. Then, [F(α) : F]s ≤

n = [F(α) : F] with equality iff α is separable over F.

Proof. By Proposition 15.8, [F(α) : F]s is exactly the number of roots of p(x) := irr(α, F) in F. This
is at most n = degp(x). Moreover, equality occurs implies that all roots are distinct, and thus α is
separable over F.

Theorem 16.24 (Tower Law for separable degree). Let F ⊆ E ⊆ K be a tower of finite algebraic
extensions. Then, [E : F]s ≤ [E : F], and

[K : F]s = [K : E]s · [E : F]s .
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Proof. We first show that the separable degree is multiplicative. Let n := [K : E]s andm := [E : F]s,
and let σ : F→ L be an embedding into an algebraically closed field L.

Let σ1, . . . ,σm : E → L be extensions of σ. Then, each σi has extensions σ(1)i , . . . ,σ(n)i : K → L.

Note that the set
{
σ
(j)
i : 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
has cardinality mn since all extensions obtained

are distinct. Clearly, any embedding τ : K → L extending σ is obtained this way. (τ|E = σi for
some i, and thus, τ = σ(j)i for some j). Thus, [K : F]s = mn as desired.

Now, since E/F is finite, we can construct α1, . . . ,αg such that E = F(α1, . . . ,αg). We have the
chain

F ⊆ F(α1) ⊆ F(α1,α2) ⊆ · · · ⊆ F(α1, . . . ,αg).

By Proposition 16.23, we have[
F(α1, . . . ,αi+1 : F(α1, . . . ,αi)

]
s
≤
[
F(α1, . . . ,αi+1 : F(α1, . . . ,αi)

]
for all i = 0, . . . ,g− 1. Since both degrees are multiplicative, we are done.

Corollary 16.25. Let F ⊆ E ⊆ K be a tower of finite algebraic extensions. Then, [K : F] = [K : F]s
iff the equality holds at each stage.

Theorem 16.26. Let E/F be a finite extension. Then, E/F is separable iff [E : F] = [E : F]s.

Proof. Write E = F(α1, . . . ,αn) for αi ∈ E. (Since E/F is finite, it is also algebraic by Proposi-
tion 13.16). Now, put

F0 := F and Fi := F(α1, . . . ,αi),

for i = 1, . . . ,n.

( =⇒ ) Assume E/F is separable. Then, since each αi is separable over F, it follows that αi is
separable over Fi for i = 1, . . . ,n. (Note that irr(αi, Fi) | irr(αi, F)). Thus, we see that

[Fi : Fi−1]s = [Fi : Fi−1]

for all i = 1, . . . ,n. Multiplying gives us [E : F]s = [E : F].

(⇐= ) Let α ∈ E be arbitrary. Consider the tower

F ⊆ F(α) ⊆ E.

Since [E : F]s = [E : F], we must also have [F(α) : F]s = [F(α) : F], by Corollary 16.25. Thus, α is
separable over F by Proposition 16.23.

Corollary 16.27. Let α ∈ E ⊇ F be separable over F. Then, F(α)/F is separable.

Proof. By Proposition 16.23, [F(α) : F]s = [F(α) : F]. The result follows by Theorem 16.26.
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Proposition 16.28. Let F ⊆ E ⊆ K be a tower of fields. Then, K/F is separable iff K/E and E/F

are.

Proof. For both parts, note that if α ∈ K is algebraic over F, then it is also algebraic over E.
Moreover, irr(α, E) | irr(α, F). (The divisibility is in E[x]).

( =⇒ ) Let α ∈ K be arbitrary. Then, α is algebraic over F and thus, over E. Since irr(α, F) has
no repeated roots, neither does its factor irr(α, E). Thus, K/E is separable. Now, let β ∈ E be
arbitrary. Then, β ∈ K and thus, irr(α, F) is separable. Thus, E/F is separable.

( ⇐= ) Let α ∈ K be arbitrary. Note that α is algebraic over E since it is separable over E. Let
irr(α, E) = a1 + · · ·+ anxn−1 + xn ∈ E[x]. Put

F0 = F and Fi = F(a1, . . . ,ai),

for i = 1, . . . ,n. By ( =⇒ ), we see that ai is separable over Fi−1 and hence,

[Fi : Fi−1]s = [Fi : Fi−1]

for all i = 1, . . . ,n. Finally, put Fn+1 = Fn(α). Then, the above equality also holds for i = n+ 1,
since α is separable over Fn. (Note that by construction, irr(α, Fn) = irr(α, E), and the latter is
separable by assumption). Upon multiplying, we get [Fn+1 : F]s = [Fn+1 : F], and thus Fn+1/F is
separable. Since α ∈ Fn+1, α is separable over F, and thus K/F is separable.

Corollary 16.29. Let f(x) ∈ F[x] be a separable polynomial and let E ⊇ F be a splitting field of
f(x) over F. Then, E/F is separable.

Proof. Write E = F(r1, . . . , rn) where f(x) = a(x− r1) · · · (x− rn), and apply the previous proposi-
tion and corollary repeatedly.

Proposition 16.30. Let E/F be a finite extension. Then, [E : F]s divides [E : F]. If ch(F) =: p > 0,

then the quotient [E : F]
[E : F]s

is a power of p.

Proof. If ch(F) = 0, then F is a perfect field by Corollary 16.16. Since E/F is a finite extension,
it is also algebraic by Proposition 13.16. Thus. E/F is separable and the two degrees are equal.
Suppose now that ch(F) =: p > 0.

First suppose that E = F(α) for some α ∈ E. Let p(x) := irr(α, E) and let d := degp(x). By
Proposition 16.19, p(x) factors in F[x] as

p(x) = (x−α)p
n

(x−α2)
pn · · · (x−αg)p

n

for some n ∈ N, where α2, . . . ,αg ∈ F \ {α} are distinct. Note that gpn = d. By Proposition 15.8,
[F(α) : F]s = g. Thus, the statement is true.

For a general finite extension E/F, write E = F(β1, . . . ,βk) and use the fact that degrees are
multiplicative.
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§17. Finite Fields

§§17.1. Existence and Uniqueness

We let p denote an arbitrary prime number.

Theorem 17.1 (Uniqueness of finite fields). Let K and L be two finite fields with the same cardi-
nality. Then, K and L are isomorphic.

Proof. Let q := |K| and p := ch(K). Then, q = pn for some n ∈N+. Note that K× is a (multiplica-
tive) group of order q− 1. By Lagrange’s Theorem, we have that aq−1 = 1 for all a ∈ K×. We thus
get that aq − a = 0 for all a ∈ K (including 0). Hence, K is a splitting field of xq − x over Fp, and
so is L. By the Isomorphism of Splitting Fields, K and L are isomorphic.

Definition 17.2. We shall denote the finite field with pn elements as Fpn .

Remark 17.3. Note that we have not yet shown that the finite field Fpn exists for all prime p, and
all n ∈N+. We have only shown that if such a field exists, then it is unique up to isomorphism.

Theorem 17.4 (Existence of finite fields). Fix a prime p and an algebraic closure Fp. For every
n ∈N+, there exists a unique subfield of Fp of size pn, denoted by Fpn . Furthermore,

Fp =
⋃

n∈N+

Fpn .

Proof. Fix n ∈ N+ and let q := pn. Fp contains a unique splitting field of xq − x =: f(x) over Fp.
We show that this splitting field has q elements. Consider

K =
{
α ∈ Fp | f(α) = 0

}
.

Then, |K| = q, since f(x) is separable by the Derivative Criterion for Separability. Thus, K is the
desired splitting field. Conversely, any field with q elements would be the set of roots of xq − x,
hence we have uniqueness.

We now show that Fp =
⋃
k≥1 Fpk . Let α ∈ Fp and let d := degFp

(α). Then, [Fp(α) : Fp] = d and
hence, α ∈ F(α) = Fpd .

Proposition 17.5. The polynomial f(x) := x4 + 1 is irreducible in Z[x] but it is reducible in Fp for
every prime p.
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Proof. For irreducibility in Z[x], note that

f(x+ 1) = x4 + 4x3 + 6x2 + 4x+ 2

is irreducible by applying the Eisenstein-Schönemann Criterion at the prime 2.

Now, let p be a prime. If p = 2, then x4 + 1 = (x + 1)4. Let p > 2 be an odd prime. Then,
p2 ≡ 1 (mod 8). We then have

x4 + 1 | x8 − 1 | xp
2−1 − 1 | xp

2

− x.

Now, suppose x4 + 1 is irreducible and let α ∈ Fp be a root. Then, [Fp(α) : Fp] = deg(x4 + 1) = 4.
But, α is clearly contained in the splitting field of xp

2
− x over Fp, which is Fp2 ⊆ Fp and so, is

contained in a degree 2 extension, a contradiction.

§§17.2. Gauss’ Necklace Formula

We recall (without proof) the Möbius inversion formula.

Definition 17.6. The Möbius function µ : N+ →N+ is defined as

µ(n) :=


1 n = 1,
(−1)r n is a product of r distinct primes, and
0 p2 | n for some prime p.

Theorem 17.7 (Möbius inversion formula). Let f,g : N+ →N+ be functions satisfying

f(n) =
∑
d|n

g(d).

Then, they also satisfy

g(n) =
∑
d|n

f

(
n

d

)
µ(d).

For the remainder, p denotes an odd prime and q denotes a positive integral power of p.

Lemma 17.8. Ifm | n, then xq
m
− x | xq

n
− x in Fq[x].

Proof. Fix an algebraic closure Fq. Since f(x) := xq
m
− x is separable, by the Derivative Criterion

for Separability, it suffices to show that every root of f(x) is also a root of xq
n
− x =:= g(x). Let α

be a root of f(x). We have
αq

m

= α.

Raising both sides to the power qm, we obtain

αq
2m

= αq
m

= α.
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Continuing repeatedly, we see that
αkm = α

for all k ∈N+, and for k = n/m in particular. This gives us g(α) = 0, as desired.

Lemma 17.9. Let f(x) ∈ Fq[x] be a monic irreducible polynomial. Then, f(x) | xq
n
− x iff deg f | n.

Proof. ( =⇒ ) Suppose f(x) | xq
n
− x. Then, Fqn contains all roots of f(x). Let α ∈ Fqn be a root

of f(x). Considering the tower Fq ⊆ Fq(α) ⊆ Fqn , shows that deg f(x) = [Fq(α) : Fq] divides
[Fqn : Fq] = n.

(⇐= ) Let d := deg f(x) and suppose d | n. Fix an algebraic closure Fq of Fq. Let α ∈ Fq be a root
of f(x). Then, [F(α) : F] = d and thus, by Theorem 17.4, we have that

F(α) = Fqd =
{
βq

d

−β = 0 | β ∈ Fq

}
.

Thus, every root of f(x) satisfies xq
d
− x. Since this divides xq

n
− x by Lemma 17.8, we are done.

Remark 17.10. Lemma 17.9 essentially shows that the monic factorisation of xq
n
− x in Fq[x] con-

sists of every (monic) irreducible polynomial of degree d where d runs over all the divisors of n.
Moreover, no factor can be repeated since xq

n
− x is separable.

Theorem 17.11 (Gauss’ Necklace Formula). The number of irreducible polynomials of degree n
over Fq is given by

Nq(n) :=
1

n

∑
d|n

µ(d)qn/d.

Proof. By Lemma 17.9, we note that

xq
n

− x =
∏
d|n

f
(d)
1 (x) · · · f(d)

Nq(d)
(x),

where f(d)1 (x), . . . , f(d)
Nq(d)

(x) are all the monic irreducible polynomials of degree d. Equating the
degree on both sides gives us

qn =
∑
d|n

dNq(d).

Defining f(n) := qn and g(n) := nNq(n) allows us to use the Möbius inversion formula to obtain
the result.

§§17.3. Primitive Element Theorem
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Definition 17.12. Let E/F be a field extension. An element α ∈ E is called a primitive element
for E over F if E = F(α).

We say that E is primitive over F if there exists a primitive element for E over F.

Theorem 17.13 (Primitive Element Theorem). Let K/F be a finite extension.

1. There is a primitive element for K/F iff the number of intermediate subfields E such that
F ⊆ E ⊆ K is finite.

2. If K/F is separable, then K/F is primitive.

Proof. Omitted due to time constraints.
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§18. Normal Extensions

Definition 18.1. An algebraic extension E/F is called a normal extension if whenever f(x) ∈ F[x]
is irreducible and has a root in E, then f(x) splits into linear factors in E[x].

Definition 18.2. Let E/F be an extension and let F =
{
fi(x)

}
i∈I be a (possibly infinite) family of

non-constant polynomials in F[x]. Then, E is said to be a splitting field for the family F over F

if each fi(x) ∈ F splits as a product of linear factors in E[x] and is generated by the roots of the
polynomials.

Remark 18.3. A splitting field for any family always exists since an algebraic closure exists. So,
we consider A ⊆ F to be the set of roots of all polynomials in the family, and put E := F(A) ⊆ F.

Proposition 18.4. Let F be a field and let F ⊆ F[x] be a family of separable polynomials. Then,
E/F is separable where E ⊆ F is the splitting field of F over F.

Proof. Let a ∈ E = F(A) where A is as in Remark 18.3. By Corollary 9.55, there is a finite set
{a1, . . . ,an} ⊆ A such that a ∈ F(a1, . . . ,an). Since each ai is a root of a separable polynomial,
it is separable. Applying Corollary 16.27 repeatedly, we see that F(a1, . . . ,an)/F is a separable
extension, hence a is separable over F.

Lemma 18.5. Let E/F be an algebraic extension. Let σ : E→ E be an F-embedding. Then, σ is an
automorphism of E.

Proof. We only need to prove that σ is onto. Let α ∈ E be arbitrary. Put p(x) := irr(α, F). Let
K ⊆ E be the subfield of E generated by the roots of p(x) in E. Then, K is a finite dimensional
vector space over F and α ∈ K. Since σ is an F-embedding, it maps roots of p(x) to roots of p(x).
Thus, σ(K) ⊆ K. Since σ is an F-linear map and K is a finite dimensional vector space over F, σ|K
is onto and contains α in its image. Since α ∈ E was arbitrary, we are done.

Theorem 18.6. Let F be a field and fix an algebraic closure F of F. Let F ⊆ E ⊆ F be fields. Then,
the following are equivalent.

1. Every F-embedding σ : E→ F is an automorphism of E.

2. E is a splitting field of a family of polynomials in F[x].

3. E/F is a normal extension.

Proof. (1 =⇒ 2) Let a ∈ E and pa(x) = irr(a, F). If b ∈ F is a root of pa(x), then there exists an
F-isomorphism F(a)toF with a 7→ b. Extend this to a map σ : E → F. By hypothesis, we have
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E = σ(E) 3 b. Thus, E is a splitting field of the family
{
pa(x)

}
a∈E

.

(2 =⇒ 3) Let E be a splitting field of the family
{
pi(x)

}
i∈I ⊆ F[x] over F. Let f(x) ∈ F[x] be

an irreducible having a root a ∈ E. Let b ∈ F be any root of f(x). There exists an F-embedding
F(a) → F with a 7→ b. Extend this to an F-embedding σ : E → F. Since σ fixes F, it maps roots
of pi(x) to its roots for all i ∈ I. Since E is generated by these roots, we see that σ(E) ⊆ E and
hence b ∈ E. Thus, all roots of f(x) lie in E, and hence, f(x) splits linearly over E. Since f(x) was
an arbitrary irreducible polynomial, we are done.

(3 =⇒ 1) Let σ : E→ F be an F-embedding. Let a ∈ E. Then, p(x) := irr(a, F) splits linearly over
E. Since σ fixes F, σ(a) is a root of p(x), and thus σ(a) ∈ E. Thus, σ(E) ⊆ E. By Lemma 18.5, we
get that σ is an automorphism of E. (Note that E/F is indeed algebraic since E ⊆ F.)

Proposition 18.7. Let F ⊆ E1, E2 ⊆ K be fields. Suppose that Ei/F are normal. Then, so are
E1E2/F and (E1 ∩E2)/F.

Proof. Fix an algebraic closure F ⊇ K. Let σ : E1E2 → F be an F-embedding. Then, σ(E1E2) =
σ(E1)σ(E2) = E1E2. Since this is true for any F-embedding, E1E2/F is normal by Theorem 18.6.
Similar calculations also hold for the intersection.

Example 18.8. Quadratic extensions are always normal. Pick α ∈ E \ F, then E = F(α) is a
splitting field of irr(α, F) over F.

Remark 18.9. Unlike the “tower laws” for algebraic and separable extensions, the “composition”
of normal extensions need not be normal. For example, consider the chain

Q ⊆ Q(
√
2) ⊆ Q(

4
√
2).

Each successive extension is quadratic and hence normal. However, Q( 4
√
2)/Q is not normal

since the irreducible (via Eisenstein-Schönemann Criterion) polynomial x4 − 2 ∈ Q[x] has a root
in Q( 4

√
2) but does not factor completely. However, one part of the “tower law” does hold, as can

be easily verified.

Proposition 18.10. Let F ⊆ E ⊆ K be fields. If K/F is normal, then so is K/E.
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§19. Galois Extensions

§§19.1. Introduction

Definition 19.1. A field extension E/F is called a Galois extension if it is normal and separable.
The Galois group of a Galois extension E/F is the group of all F-automorphisms of E under
composition. It is denoted as Gal(E/F).

If f(x) ∈ F[x] is a separable polynomial and E is a splitting field of f(x) over F, then E/F is a
Galois extension and the Galois group of f(x) over F is defined to be Gal(E/F) and is denoted as
Gal(f(x), F) or simply Gf if F is clear from context.

Remark 19.2. The definition of Gal(f(x), F) does not depend on the splitting field chosen, up to
isomorphism. Let E and E′ be two splitting fields of f(x) over F. By the Isomorphism of Splitting
Fields, there is an F-isomorphism τ : E → E′. Then, σ 7→ τ ◦ σ ◦ τ−1 is an isomorphism from
Gal(E/F) to Gal(E′/F).

Example 19.3.

1. Let E/F be an extension of finite fields. Then, |F| = q and |E| = qn for some prime power q
and some n ∈ N+. Then, E is a splitting field for xq

n
− x ∈ F[x] over F. Thus, the extension

is normal. Since the fields are finite, it is also separable. Thus, E/F is Galois.

2. The extension Q( 3
√
2)/Q is not Galois. Since ch(Q) = 0, it is separable by Corollary 16.16.

However, it is not normal since the irreducible (via Eisenstein-Schönemann Criterion) poly-
nomial x3 − 2 ∈ Q[x] has a root in Q( 3

√
2) but does not split as a product of linear factors.

Proposition 19.4. Let E/F be a finite Galois extension. Then, |Gal(E/F)| = [E : F]s = [E : F].

Proof. Fix an algebraic closure F ⊇ E. Let n : [E : F]s. Let σ1, . . . ,σn : E → F be F-embeddings.
Since E/F is normal, σi ∈ Gal(E/F). Thus, |Gal(E/F)| ≥ n. On the other hand, if σ ∈ Gal(E/F),
then σ is an F-embedding of E into F when composed with the inclusion. Thus, Gal(E/F) =
{σ1, . . . ,σn}. The last equality follows by Theorem 16.26.

Remark 19.5. The above proposition shows why both normality and separability are needed. If
the extension is normal but not separable, then the order of the group would be the separable
degree, which would not be equal to the degree by Theorem 16.26 again.

On the other hand, if the extension was separable but not normal, then there would be an extension
σ : E→ F that would map E outside E and so, not all extensions will belong to the Galois group.

For example, consider Q( 3
√
2)/Q. Since there is only one root of x3 − 2 ∈ Q[x] in Q( 3

√
2), there is

only one Q-automorphism of Q( 3
√
2).
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Proposition 19.6. Let q be a prime power. The Galois group of the Galois extension Fqn/Fq is
the cyclic group of order n generated by the Frobenius automorphism ϕ : Fqn → Fqn defined by
a 7→ aq.

Proof. ϕ is an Fq-automorphism since any a ∈ Fq satisfies xq − x. Thus, ϕ ∈ Gal(Fqn/Fq). By
Proposition 19.4, we have

∣∣Gal(Fqn/Fq)
∣∣ = n. Thus, it suffices to show that ϕ has order at least n.

Let the order of ϕ be d. Then, d ≤ n. Note that

ϕd(a) = aq
d

.

If ϕd = idFqn , then every a ∈ Fqn satisfies xq
d
− x. Thus, qd ≥ qn and thus d ≥ n. Hence,

d = n.

Example 19.7. An extension K/F is called biquadratic if [K : F] = 4 and K is generated over F

by roots of two irreducible separable quadratic polynomials. In particular, K/F is Galois. Write
K = F(α,β) and let p(x) := irr(α, F) and q(x) := irr(β, F). Let α,β ∈ K denote the other root of
p(x) and q(x) respectively. By separability, α 6= α and β 6= β.

Since
[
F(α,β) : F

]
= 4, p(x) is irreducible over F(β) and q(x) over F(α). The four automorphisms

are thus determined by sending α to α or α and β to β or β.

Define the automorphisms τ,σ : K→ K by

τ(α) = α, τ(β) = β,

σ(α) = α, τ(β) = β.

Then, τ2 = σ2 = idK. Thus, Gal(K/F) = Z2 ×Z2, the Klein-four group, V4.

Example 19.8 (Galois group of a separable cubic). Let F be a field with ch(F) 6= 2, 3. Let f(x) =
x2 + px+ q ∈ F[x] be an irreducible cubic. In particular, f(x) has no roots in F[x]. Note that

f′(x) = 3x2 + p 6= 0

since ch(F) 6= 3. Thus, f(x) is separable by Proposition 16.10. Thus, a splitting field E of f(x) over
F must have degree either 3 or 6. Thus, by Proposition 19.4, |Gal(E/F)| = 3 or 6. We now show
how the discriminant determines this.

Let E = F(α1,α2,α3), where f(x) =
∏3
i=1(x− αi). Any σ ∈ Gal(E/F) permutes these roots. Let

pσ ∈ S3 denote the corresponding permutation. Then, σ 7→ pσ is injective. Under this, we identify
Gal(E/F) with a subgroup of S3. Thus, Gal(E/F) = A3 or S3.

Let
δ = (α1 −α2)(α2 −α3)(α3 −α1).

Then, δ2 = disc(f(x)) = −(4p3 + 7q2) ∈ F. Thus,
[
F(δ) : F

]
≤ 2. Now, if δ ∈ F, then Gal(E/F)

cannot have any odd permutations since they do not fix δ, and thus Gal(E/F) = A3. On the other
hand, if δ /∈ F, then 2 =

[
F(δ) : F

]
| [E : F], and thus Gal(E/F) = S3.



§19 Galois Extensions 140

Note that δ ∈ F ⇐⇒ disc(f(x)) is a perfect square in F, so the above is completely determined by
the discriminant being a perfect square. For example, if f(x) = x3+ x+ 1 ∈ Q[x], then disc(f(x)) =
−31 and Gal(E/Q) ∼= S3. On the other hand, if f(x) = x3 + 3x+ 1, then disc(f(x)) = 81 = 92, and
thus, Gal(E/Q) ∼= A3.

§§19.2. The Fundamental Theorem of Galois Theory

Definition 19.9. Let E be a field and let G be a group of automorphisms of E. Then,

EG :=
{
a ∈ E | σ(a) = a for all σ ∈ G

}
is called the fixed field of G acting on E.

Theorem 19.10 (Fundamental Theorem of Galois Theory (FTGT)). Let K/F be a finite Galois ex-
tension. Consider the sets

I =
{

E | E is an intermediate field of K/F
}

and G =
{
H | H ≤ Gal(K/F)

}
.

1. The maps
E 7→ Gal(K/E) and H 7→ KH

gives a one-to-one correspondence between I and G, called the Galois correspondence.
Moreover, this correspondence is inclusion reversing.

2. E/F is Galois iff Gal(K/E) E Gal(K/F), and in this case

Gal(E/F) ∼=
Gal(K/F)

Gal(K/E)
.

3. K/E is always Galois and |Gal(K/E)| = [K : E] =
[K : E]

[E : F]
.

4. If E1, E2 ∈ I correspond to H1,H2 ∈ G, then E1 ∩ E2 corresponds to 〈H1,H2〉 and E1E2

corresponds to H1 ∩H2.

Proof. Omitted due to time constraints.
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